全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主成分分析的几个应用理解及R语言实践
Several Applications of Principal Component Analysis and Corresponding R Language Practice

DOI: 10.12677/HJDM.2021.114019, PP. 203-216

Keywords: 主成分分析,数据降维,综合评价,关键特征确定,样本聚类,R语言实践
Principle Component Analysis
, Dimensionality Reduction, Comprehensive Evaluation, Determination of the Key Features, Samples Clustering, R Language Practice

Full-Text   Cite this paper   Add to My Lib

Abstract:

主成分分析是一种常用的简化数据集的技术,也是一种应用广泛的多元统计分析方法。在各高校开设的多门课程中,主成分分析的理论都是重点内容。但在教学过程中,我们发现其理论与实际应用间还有很多值得理解、挖掘和实践验证的地方。本文针对主成分分析过程进行回顾,并主要探讨其几个应用情况,即基于主成分分析的数据降维、基于主成分分析的综合评价、基于主成分分析的关键特征确定、基于主成分分析的样本聚类等几个方面。我们详细梳理并部分推导和补充每个应用的理论过程,整理各种应用在一些文献里的使用场景,给出我们对各个应用的R语言实践代码和相应分析等。这些应用的理论过程和R语言实践,有助于对主成分分析进行深刻理解和融会贯通,为主成分分析的学习和使用提供重要的参考。
Principal component analysis is a commonly used technology to simplify data sets, it is also one kind of widely used methods of multivariate statistical analysis. In many courses offered by colleges, the theory of principal component analysis is a key content. But in the teaching process, we find that there are a lot of things which are worth understanding, exploring and verifying by practice be-tween the theory and the practical applications. This paper reviews the process of principal com-ponent analysis, and mainly discusses about its several applications, namely the data dimension reduction based on principal component analysis, comprehensive evaluation based on principal component analysis, determination of the key features based on principal component analysis, samples clustering based on principal component analysis. We detailedly reorganize, partially derivate and complete the theoretical process of each application, organize some usage scenario of applications in literature, give codes of R language practice and the corresponding analysis for each application. The theoretical process and R language practice of these applications are helpful for some researchers to further understand and master the principal component analysis, and also provide important reference for the initial learner to learn and use it.

References

[1]  朱建平. 应用多元统计分析[M]. 北京: 科学出版社, 2016.
[2]  杨济萍. 基于主成分降维模型的手写数字识别研究[J]. 网络安全技术与应用, 2021(3): 31-32.
https://doi.org/10.3969/j.issn.1009-6833.2021.03.017
[3]  单燕, 李玲娟, 孙杜靖. 基于主成分分析的并行化数据流降维算法研究[J]. 南京邮电大学学报(自然科学版), 2015, 35(5): 99-104.
https://doi.org/10.14132/j.cnki.1673-5439.2015.05.014
[4]  张素智, 陈小妮. 基于互信息可信度的主成分分析数据降维[J]. 湖北民族学院学报(自然科学版), 2019, 37(4): 425-430.
https://doi.org/10.13501/j.cnki.42-1569/n.2019.12.014
[5]  李丹, 杨保华, 张远航, 缪书唯, 王奇. 基于最优RBF核主成分的空间多维风电功率降维及重构[J]. 电网技术, 2020, 44(12): 4539-4546.
https://doi.org/10.13335/j.1000-3673.pst.2019.2626
[6]  于永堂, 郑建国, 黄鑫. 基于主成分分析的黄土高填方工后沉降组合预测方法[J]. 水利与建筑工程学报, 2021, 19(3): 117-123.
https://doi.org/10.3969/j.issn.1672-1144.2021.03.019
[7]  刘晓悦, 张雪梅, 杨伟. 基于PCA-SVM的岩爆预测[J]. 中国矿业, 2021, 30(7): 176-180.
https://doi.org/10.12075/j.issn.1004-4051.2021.07.005
[8]  张伟龙, 杨静慧, 宋科, 蒋鑫, 郜伟, 张超, 冯国华. 基于主成分分析油用牡丹“凤丹”主要性状评价及选优[J]. 天津农学院学报, 2021, 28(2): 12-17.
https://doi.org/10.19640/j.cnki.jtau.2021.02.003
[9]  江晓欣. 基于主成分分析的建筑施工企业信用评价研究[J]. 山西建筑, 2021, 47(15): 189-192.
https://doi.org/10.13719/j.cnki.1009-6825.2021.15.072
[10]  李炳军, 张一帆, 张淑华. 主成分分析法的改进及其在河南区域经济发展评价中的应用[J/OL]. 河南农业大学学报: 1-14[2021-08-15].
https://doi.org/10.16445/j.cnki.1000-2340.20210618.001
[11]  钱冲, 廖永红, 刘明艳, 徐瑾, 刘丽, 于莉. 不同香型白酒的聚类分析和主成分分析[J]. 中国食品学报, 2017, 17(2): 243-255.
https://doi.org/10.16429/j.1009-7848.2017.02.032
[12]  江波, 黄建华. 基于营养元素的茎瘤芥主成分分析和产地溯源[J/OL]. 食品与发酵工业: 1-8[2021-08-15].
https://doi.org/10.13995/j.cnki.11-1802/ts.027925
[13]  侯雪伟, 吕鑫, 魏蕾. 正交与斜交旋转主成分分析法在气象因子影响细颗粒物研究中的应用[J]. 环境科学学报, 2021, 41(7): 2598-2606.
https://doi.org/10.13671/j.hjkxxb.2020.0552

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133