全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydroclimatology of the Kaduna River Basin

DOI: 10.4236/ajcc.2021.103017, PP. 353-369

Keywords: Hydroclimatology, Kaduna River Basin, Water Balance, Nigeria

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examined the hydroclimatology of the Kaduna River Basin (KRB) in northern Nigeria. In achieving this, monthly data on temperature (T) and rainfall (P) were sourced from ten hydrometeorological stations across the basin from 1990 to 2018. DrinC (Drought Indices Calculator) software was deployed to calculate Potential Evapotranspiration (PET) adopting Thornthwaite approach. Water Balance (WB) model was used further to estimate other WB components i.e. soil moisture (SM), actual evapotranspiration (ETa), Water surplus (S) and Runoff (R). WB components are used to examine the temporal and spatial variability of the KRB for hydrological years (1990-2018). KRB was divided into two sub-basins (Lower and Upper KRB). The WB analyses indicated the peak of R generally occurs during the wet season (i.e. April through October) most especially at the Upper KRB. The study further reveals that the runoff efficiencies imply that <44% of annual P results in R at the upper KRB while <27% of annual P results in R at the lower KRB. The study shows that SM utilization occurs mostly towards the end of the year and at the early months (i.e. November through March) across the basin while the majority of S is generated during wet season months, particularly from April through October when ~95% of S occurs on average with the peak S in August. The results of this study provide a baseline understanding of the hydroclimatology of the KRB which can be used as a starting point for further analyses, especially for water resources management.

References

[1]  ’Bayo Omotosho, J., & Abiodun, B. J. (2007). A Numerical Study of Moisture Build-Up and Rainfall over West Africa. Meteorological Applications, 14, 209-225.
https://doi.org/10.1002/met.11
[2]  Afiesimama, E. A., Pal, J. S., Abiodun, B. J., Gutowski Jr., W. J., & Adedoyin, A. (2006). Simulation of West African monsoon using the RegCM3. Part I: Model Validation and Interannual Variability. Theoretical and Applied Climatology, 86, 23-37.
https://doi.org/10.1007/s00704-005-0202-8
[3]  Agronews (2019). Nigerian States and Their Agricultural Produce. Agro News Nigeria.
[4]  Akinbobola, A., Okogbue, E. C., & Olajiire, O. O. (2015). A GIS Based Flood Risk Mapping along the Niger-Benue River Basin in Nigeria using Watershed Approach. Ethiopian Journal of Environmental Studies and Management, 8, 616-627.
https://doi.org/10.4314/ejesm.v8i6.1
[5]  Andersen, I., Dione, O., Jarosewich-Holder, M., & Olivry, J. (2008). The Niger River Basin: A Vision for Sustainable Management. World Bank.
https://www.worldbank.org
[6]  Animashaun, I. M., Oguntunde, P. G., Akinwumiju, A. S., & Olubanjo, O. O. (2020). Rainfall Analysis over the Niger Central Hydrological Area, Nigeria: Variability, Trend, and Change Point Detection. Scientific African, 8, Article ID: e00419.
https://doi.org/10.1016/j.sciaf.2020.e00419
[7]  Ayoade, J. O. (2008). Techniques in Climatology (1st ed.). Stirling-Horden Publishers Ltd.
[8]  Chinwendu, O. G., Sadiku, S. O. E., Okhimamhe, A. O., & Eichie, J. (2017). Households Vulnerability and Adaptation to Climate Variability Induced Water Stress on Downstream Kaduna River Basin. American Journal of Climate Change, 6, 247-267.
https://doi.org/10.4236/ajcc.2017.62013
[9]  Conway, D., & Mahe, G. (2009). River Flow Modelling in Two Large River Basins with Non-Stationary Behaviour: The Parana and the Niger. Hydrological Processes, 23, 3186-3192.
https://doi.org/10.1002/hyp.7393
[10]  Durowoju, O. S., & Olusola, A. O. (2017). Estimation of Water Budget and Implications for Lagos State, Nigeria. In H. K. Ayuba, K. O. Iwugo, A. Dami, & N. M. Idris (Eds.), Hydrology and Water Resources Development in Nigeria (pp. 106-111). Phorus Publishing.
http://nahs.org.ng
[11]  Durowoju, O. S., Olusola, A. O., & Anibaba, B. W. (2017). Relationship between Extreme Daily Rainfall and Maximum Daily River Discharge within Lagos Metropolis. Ethiopia Journal of Environmental Studies and Management, 10, 492-504.
https://doi.org/10.4314/ejesm.v10i4.7
[12]  Durowoju, O. S., Olusola, A. O., & Anibaba, B. W. (2018). Rainfall-Runoff Relationship and Its Implications on Lagos Metropolis. Ife Research Publications in Geography, 16, 25-33.
[13]  Frans, C., Istanbulluoglu, E., Mishra, V., Munoz-arriola, F., & Lettenmaier, D. P. (2013). Are Climatic or Land Cover Changes the Dominant Cause of Runoff Trends in the Upper Mississippi River Basin? Geophysical Research Letters, 40, 1104-1110.
https://doi.org/10.1002/grl.50262
[14]  Koppen, W. (1928). Climate Map De Earth. Justus Perthes.
[15]  Li, K. Y., Coe, M. T., Ramankutty, N., & De Jong, R. (2007). Modeling the Hydrological Impact of Land-Use Change in West Africa. Journal of Hydrology, 337, 258-268.
https://doi.org/10.1016/j.jhydrol.2007.01.038
[16]  Mahe, G., Paturel, J., Servat, E., Conway, D., & Dezetter, A. (2005). The Impact of Land Use Change on Soil Water Holding Capacity and River Flow Modelling in the Nakambe River, Burkina-Faso. Journal of Hydrology, 300, 33-43.
https://doi.org/10.1016/j.jhydrol.2004.04.028
[17]  McCabe, G. J., & Wolock, D. M. (2008). Joint Variability of Global Runoff and Global Sea Surface Temperatures. Journal of Hydrometeorology, 9, 816-824.
https://doi.org/10.1175/2008JHM943.1
[18]  Mccabe, G. J., & Wolock, D. M. (2011). Independent Effects of Temperature and Precipitation on Modeled Runoff in the Conterminous United States. Water Resources Research, 47, Article No. W11522.
https://doi.org/10.1029/2011WR010630
[19]  McCabe, G. J., & Wolock, D. M. (2013). Temporal and Spatial Variability of the Global Water Balance. Climatic Change, 120, 375-387.
https://doi.org/10.1007/s10584-013-0798-0
[20]  McCabe, G. J., & Wolock, D. M. (2019). Hydroclimatology of the Mississippi River Basin. Journal of the American Water Resources Association, 55, 1053-1064.
https://doi.org/10.1111/1752-1688.12749
[21]  Milly, P. C. D., & Dunne, K. A. (2001). Trends in Evaporation and Surface Cooling in the Mississippi River basin. Geophysical Research Letters, 28, 1219-1222.
https://doi.org/10.1029/2000GL012321
[22]  Mounir, Z. M., Ma, C. M., & Amodu, I. (2011). Application of Water Evaluation and Planning (WEAP): A Model to Assess Future Water Demands in the Niger River (In Niger Republic). Modern Apllied Science, 5, 38-49.
https://doi.org/10.5539/mas.v5n1p38
[23]  NiMET (Archive of Nigeria Meteorological Agency) (2019). Annual Report.
[24]  Oguntunde, P. G., & Abiodun, B. J. (2013). The Impact of Climate Change on the Niger River Basin Hydroclimatology, West Africa. Climate Dynamics, 40, 81-94.
https://doi.org/10.1007/s00382-012-1498-6
[25]  Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2016). A Numerical Modelling Study of the Hydroclimatology of the Niger River Basin, West Africa. Hydrological Sciences Journal, 61, 94-106.
https://doi.org/10.1080/02626667.2014.980260
[26]  Oguntunde, P. G., Abiodun, B. J., Lischeid, G., & Merz, C. (2014). Modelling the Impacts of Reforestation on the Projected Hydroclimatology of Niger River Basin, West Africa. Ecohydrology, 7, 163-176.
https://doi.org/10.1002/eco.1343
[27]  Oguntunde, P. G., Friesen, J., van de Giesen, N., & Savenije, H. H. G. (2006). Hydroclimatology of the Volta River Basin in West Africa: Trends and Variability from 1901 to 2002. Physics and Chemistry of the Earth, 31, 1180-1188.
https://doi.org/10.1016/j.pce.2006.02.062
[28]  Okpara, J. N., & Perumal, M. (2009). Hydrological Impacts Assessment of Climate Change on Water Resources of Niger River Basin Using Water Balance Model and ANNs. Joint International Convention of 8th IAHS Scientific Assembly and 37th IAH Congress on Water: A Vital Resource under Stress—How Science Can Help, Hyderabad, 6-12 September 2009, 58-71.
[29]  Ologunorisa, E. T., & Durowoju, O. S. (2014). Extreme Rainfall and Urban Flooding in a Coastal Megacity: Case Study of Lagos, Nigeria. In T. K. S. Abam, et al. (eds.), Flood and Erosion Prevention, Protection and Mitigation (pp. 85-102). SODAVE Classic Publisher.
[30]  Ologunorisa, T. E., & Akinbobola, A. (2019). Assessment of Social Vulnerability to Flood Risk in the Nigeria Delta, Nigeria. In J. M. Adegoke, B. Sylla, A. Bossa, K. Ogunjobi, & J. Adounkpe (Eds.), Regional Climate Change Series: Floods (pp. 68-73). WASCAL Publishing.
https://doi.org/10.33183/2019.rccs.p68
[31]  Olusola, A. O., Durowoju, O. S., & Adedeji, O. (2017). Interactions between Topography, Soil Moisture and Solar Radiation: A Model Approach. UNIOSUN Journal of Sciences, 2, 66-73.
[32]  Qian, T., Dai, A., & Trenberth, K. E. (2007). Hydroclimatic Trends in the Mississippi River Basin from 1948 to 2004. Journal of Climate, 20, 4599-4614.
https://doi.org/10.1175/JCLI4262.1
[33]  Rana, G., & Katerji, N. (1998). A Measurement Based Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Model for Crops of Different Height and in Contrasting Water Status. Theoretical and Applied Climatology, 60, 141-149.
https://doi.org/10.1007/s007040050039
[34]  Sankarasubramanian, A., & Vogel, R. M. (2002). Annual hydroclimatology of the United States. Water Resources Research, 38, 19-1-19-12.
https://doi.org/10.1029/2001WR000619
[35]  Sankarasubramanian, A., & Vogel, R. M. (2003). Hydroclimatology of the Continental United States. Geophysical Research Letters, 30, Article No. 1363.
https://doi.org/10.1029/2002GL015937
[36]  Siebert, A., & Ward, M. N. (2014). Exploring the Frequency of Hydroclimate Extremes on the River Niger Using Historical Data Analysis and Monte Carlo Methods. African Research Review, 33, 124-149.
https://doi.org/10.1080/19376812.2013.854707
[37]  Slabbers, P. J. (1980). Practical Prediction of Actual Evapotranspiration. Irrigation Science, 1, 185-196.
https://doi.org/10.1007/BF00270883
[38]  Steenhuis, T. S., & Van Der Molen, W.H. (1986). The Thornthwaite-Mather Procedure as a Simple Engineering Method to Predict Recharge. Journal of Hydrology, 84, 221-229.
https://doi.org/10.1016/0022-1694(86)90124-1
[39]  Sylla, M. B., Aquila, A. D., Ruti, P. M., & Giorgi, F. (2010). Simulation of the Intraseasonal and the Interannual Variability of Rainfall over West Africa with RegCM3 during the Monsoon Period. International Journal of Climatology, 30, 1865-1883.
https://doi.org/10.1002/joc.2029
[40]  The Kaduna State Bureau of Statistics (KDBS) (2019). Kaduna State Agricultural Structure Survey. Kaduna State Government.
[41]  Thornthwaite, C. W., & Mather, J. R. (1955). The Water Balance. Climatology, 8, 5-86.
[42]  Tigkas, D., Vangelis, H., & Tsakiris, G. (2015). DrinC: A Software for Drought Analysis Based on Drought Indices. Earth Science Informatics, 8, 697-709.
https://doi.org/10.1007/s12145-014-0178-y
[43]  Wise, E. K., Woodhouse, C. A., McCabe, G. J., Pederson, G. T., & St-Jacques, J.-M. (2018). Hydroclimatology of the Missouri River Basin. Journal of Hydrometeorology, 19, 161-182.
https://doi.org/10.1175/JHM-D-17-0155.1
[44]  Wolock, D. M., & McCabe, G. J. (2018). Water Balance Model Inputs and Outputs for the Conterminous United States, 1900-2015 (Data Release). US Geological Survey.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133