全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3x + 1 Problem

DOI: 10.4236/ajcm.2021.113015, PP. 226-239

Keywords: Generator, Resultant, 3x + 1 Cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

The unsolved number theory problem known as the 3x + 1 problem involves sequences of positive integers generated more or less at random that seem to always converge to 1. Here the connection between the first integer (n) and the last (m) of a 3x + 1 sequence is analyzed by means of characteristic zero-one strings. This method is used to achieve some progress on the 3x + 1 problem. In particular, the long-standing conjecture that nontrivial cycles do not exist is virtually proved using probability theory.

References

[1]  Everett, C.J. (1977) Iteration of the Number Theoretic Function f(2n) = n, f(2n + 1) = 3n + 2. Advances in Mathematics, 25, 42-45.
https://doi.org/10.1016/0001-8708(77)90087-1
[2]  Lagarias, J.C. (2010) The Ultimate Challenge: The 3x + 1 Problem. American Mathematical Society, Providence.
https://doi.org/10.1090/mbk/078
[3]  Terras, R. (1976) A Stopping Time Problem on the Positive Integers. Acta. Arithmetica, 30, 241-252.
https://doi.org/10.4064/aa-30-3-241-252
[4]  Crandall, R.E. (1978) On the 3x + 1 Problem. Mathematics of Computation, 32, 1281-1292.
https://doi.org/10.2307/2006353
[5]  Halbeisen, L. and Hungerbühler, N. (1997) Optimal Bounds for the Length of Rational Collatz Cycles. Acta Arithmetica, 78, 227-239.
https://doi.org/10.4064/aa-78-3-227-239
[6]  Eliahon, S. (1993) The 3x + 1 Problem: New Lower Bounds on Nontrivial Cycle Lengths. Discrete Mathematics, 118, 45-56.
https://doi.org/10.1016/0012-365X(93)90052-U
[7]  Brox, T. (2000) Collatz Cycles with Few Descents. Acta Arithmetica, 92, 181-188.
https://doi.org/10.4064/aa-92-2-181-188

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133