全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Herbicides Used in Horticulture (2,4-D, Glyphosate and Nicosulfuron) on Snails Achatina fulica (Bowdich, 1720)

DOI: 10.4236/jacen.2021.104026, PP. 402-414

Keywords: Herbicide Effect, Growth, Reproduction, Achatina fulica, Microcosm

Full-Text   Cite this paper   Add to My Lib

Abstract:

2,4-Dichlorophenoxyacetic (2,4-D), glyphosate, and nicosulfuron, because of their modes of action and selectivity, are the most widely used herbicides in Ivorian horticulture. Fuels toxicity was the reason of many debates in the world because of their massive and uncontrolled use. They are frequently blamed for the reduction of soil fertility and terrestrial biodiversity observed in agricultural areas. In view of the debates raised by their toxicities, the use of these herbicides requires the greatest caution and clear information on the real risk incurred by the edaphic fauna by conducting ecotoxicity studies. The present study aims to evaluate the effect of 2,4-D, glyphosate and nicosulfuron herbicides on the growth and reproduction of Achatina fulica snails in microcosm. To do this, we treated each plot on which snail microcosms were placed with 2,4-D, glyphosate or nicosulfuron herbicides according to the manufacturer’s recommendations. The results showed for all the herbicides used, that after 28 days of exposure, the growth of juvenile snails was slowed down. The number of eggs laid per pair was reduced in adult snails. The egg hatchability test revealed a reduction in egg hatchability. In addition, each effect was dependent on the herbicide used. Thus, toxicity was found to be greater according to the following order: nicosulfuron ? glyphosate ? 2,4-D. From the results obtained, we concluded that 2,4-D, glyphosate, and nicosulfuron treatments under field conditions are a potential threat to the sustainability of snail species and therefore to soil life. The intensity of the effect depends on the toxicity of the herbicides used.

References

[1]  Bloom, E.D. (2016) Bouleversement démographique. Finances et développement, 11 p.
[2]  FAO (1947) Situation mondiale pour 1947 de l’alimentation et de l’agriculture. 16 p.
[3]  FAO (1965) Bilan de la deuxième décennie de l’après-guerre. La situation mondiale de l’alimentation et de l’agriculture 1965. 295 p.
[4]  Fleischer, G., Andoli, V., Coulibaly, M. and Randolph, T. (1998) Rapport—Analyse Socio-Economique De La Filiere Des Pesticides En Cote d’Ivoire. Projet de Politique des pesticides en collaboration avec la Direction de la Protection des Végétaux et de la Qualité du Ministère de l’Agriculture et des Ressources Animales de Cote d’Ivoire, Série de Publication No. 6/F, Abidjan, 112 p.
[5]  Traoré, H. and Haggblade, S. (2017) Mise en œuvre des politiques régionales sur les pesticides en Afrique de l’ouest: Rapport de l’étude de cas en Cote d’Ivoire. Feed the Future Innovation Lab for Food Security Policy. 60 p.
[6]  Ecobichon, D.J. (2001) Pesticide Use in Developing Countries. Toxicology, 160, 27-33.
https://doi.org/10.1016/S0300-483X(00)00452-2
[7]  Soro, G., Wahabi, S.A., Adjiri, O.A. and Soro, N. (2019) Risques sanitaires et environnementaux liée à l’usage des produits phytosanitaire dans l’horticulture à azaguié (sud Cote d’Ivoire). Journal Applied Biosciences, 138, 14072-14081.
https://doi.org/10.4314/jab.v138i1.7
[8]  DPVCQ (2012) Liste des pesticides homologués et autorisés en Cote d’Ivoire au 31 décembre 2012. Direction de la Protection des Végétaux et du Controle et de la Qualité. Ministère de l’Agriculture, République de Cote d’Ivoire, 38 p.
[9]  Casabé, N., Piola, L., Fuchs, J., Oneto, L.M., Pamparato, L., Basack, S., Giménez, R., Massaro, R., Papa Juan, C. and Kesten, E. (2007) Ecotoxicological Assessment of the Effects of Glyphosate and Chlorpyrifos in an Argentine Soya Field. Journal of Soils and Sediments, 7, 232-239.
https://doi.org/10.1065/jss2007.04.224
[10]  Tissu, M., Delval, P., Mamarot, J. and Ravanel, P. (2006) Plantes, herbicides et désherbage. Edition: Association de coordination technique agricole, Paris Cedex, 635 p.
[11]  De Vaufleury, A., Cœurdassier, M., Pandard, P., Scheifler, R., Lovy, C., Crini, N. and Badot, P.M. (2006) How Terrestrial Snails Can Be Used in Risk Assessment of Soils. Environment Toxicology Chemistry, 25, 797-806.
https://doi.org/10.1897/04-560R.1
[12]  Druart, C. (2011) Effets des pesticides de la vigne sur le cycle biologique de l’escargot dans divers contextes d’exposition. Thèse de doctorat, Université de Franche-Comté, Besancon, 316 p.
[13]  Bourbia-ait, H.S. (2013) Evaluation de la toxicité de mixtures de pesticides sur un bioindicateur de la pollution des sols Helix aspersa. Thèse de doctorat, Universite Badji Mokhtar, Annaba, 110 p.
[14]  Djatita, O. (2019) Evaluation des effets de l’herbicide Cossack(od) sur les paramètres physiologiques de l’escargot Helix aspersa. Mémoire de master, Université Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj, 38 p.
[15]  Boileau, E. (2015) Ecotoxicologie et impacts sanitaires des pesticides en réponses à l’augmentation des ravageurs amenés par les changements climatiques: Portrait, perspectives et recommandations. Mémoire de maitrise, université Sherbrooke, Québec, 118 p.
[16]  N’guessan, K.A., Diarrassouba, N., Koné, B., Alui, K.A. and Yao, K.A. (2015) Caractérisation morpho-pédologique et contraintes au développement de Lippia multiflora sur deux sols tropicaux de Cote d’Ivoire. Journal of Animal and Plant Sciences, 24, 3814-3828.
[17]  ISO 15952 (2006) Qualité du sol. Effets des polluants vis-à-vis des escargots juvéniles (Helicidae). Détermination des effets sur la croissance par contamination du sol.
https://www.iso.org
[18]  OECD (2016) Ligne directrice de l’OCDE n° 243 pour les essais de produits chimiques. Essai de reproduction chez Lymnaea stagnalis. 31 p.
https://doi.org/10.1787/9789264264342-fr
[19]  Viard, B., Maul, A. and Pihan, J.-C. (2004) Standard Use Conditions of Terrestrial Gastropods in Active Biomonitoring of Soil Contamination. Journal of Environmental Monitoring, 6, 103-107.
https://doi.org/10.1039/b307484f
[20]  Gomot, A., Gomot, L., Marchand, C.-R., Colard, C. and Bride, J. (1992) Immunocytochemical Localization of Insulin-Related Peptide(s) in the Central Nervous System of Snail Helix aspersa Müller: Involvement in Growth Control. Cellular and Molecular Neurobiology, 12, 21-32.
https://doi.org/10.1007/BF00711636
[21]  Simkiss, K. and Watkins, B. (1990) The Influence of Gut Microorganisms on Zinc Uptake in Helix aspersa. Environmental Pollution, 66, 263-271.
https://doi.org/10.1016/0269-7491(90)90006-X
[22]  Swaileh, K.M. and Ezzughayyar, A. (2000) Effects of Dietary Cd and Cu on Feeding and Growth Rates of the Land Snail Helix engaddensis. Ecotoxicology and Environmental Safety, 47, 253-260.
https://doi.org/10.1006/eesa.2000.1961
[23]  Swaileh, K., Hussein, R. and Halaweh, N. (2002) Metal Accumulation from Contaminated Food and Its Effect on Growth of Juvenile Landsnails Helix engaddensis. Journal of Environmental Science and Health, Part B, 37, 151-159.
https://doi.org/10.1081/PFC-120002987
[24]  Coeurdassier, M., Saint-Denis, M., Gomot de Vaufleury, A., Ribera, D. and Badot, P.M. (2001) The Garden Snail (Helix aspersa) as a Bioindicator of Organophosphorus Exposure: Effects of Dimethoate on Survival, Growth, and Acetylcholinesterase Activity. Environmental and Chemistry, 20, 1951-1957.
https://doi.org/10.1002/etc.5620200913
[25]  Lawrence, A.J., Arukwe, A., Moore, M., Sayer, M. and Thain, J. (2003) Molecular/Cellular Processes and the Physiological Response to Pollution. In: Effects of Pollution on Fish, Molecular Effects and Population Responses, Blackwell Science, Oxford, 83-133.
https://doi.org/10.1002/9780470999691.ch3
[26]  Laskowski, R. and Hopkin, S.P. (1996) Effect of Zn, Cu, Pb, and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and Environmental Safety, 34, 59-69.
https://doi.org/10.1006/eesa.1996.0045
[27]  Turner, R.L. (1998) Effects of Submergence on Embryonic Survival and Development Rate of the Florida Apple Snail, Pomacea paludosa: Implications for Egg Predation and Marsh Management. Florida Scientist, 61, 118-129.
[28]  Musri, M., Sofia, K., Sofyatuddin, K., Rahmat, R. and Fina, A. (2013) A Preliminary Study on the Anti Hatching of Freshwater Golden Apple Snail Pomacea canaliculata (Gastropoda: Ampullariidae) Eggs, from Barringtonia racemosa (Magnoliopsida Lecythidaceae) Seeds Extract. International Journal of the Bioflux Society, 6, 394-397.
[29]  Schuytema, G.S., Nebeker, A.V. and Griffis, W.L. (1994) Effects of Dietary Exposure to Forest Pesticides on the Brown Garden Snail Helix aspersa Muller. Archives of Environmental Contamination and Toxicology, 26, 23-28.
https://doi.org/10.1007/BF00212789

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133