Atmospheric deposition of nutrients, particularly nitrogen and phosphorus has the capacity to significantly affect the productivity and biogeochemistry of aquatic ecosystems. The objective of this study was to assess the impact of land use/cover types on the atmospheric deposition of nutrients around Lake Kivu. Dry and wet atmospheric deposition samples were collected from four different land use/cover types (forest, wetland, agricultural and urbanized area) at four stations (Goma, Lwiro, Bukavu and Iko) around the Lake Kivu basin. The highest annual loading of dry total phosphorus (TP) was recorded at a station located in an urban area at Goma (4.4 ± 3.9 μmol/m2/yr) and the highest dry deposition of total nitrogen (TN) was recorded at Iko (84.5 ± 41.2 μmol/m2/yr). High wet TP and TN were at Bukavu (0.7 ± 1.1 μmol/m2/yr) and Iko (21.7 ± 34.7 μmol/m2/yr) respectively. High dry TP loads were recorded in the forest area of Goma and the highest dry TN at Lwiro. High wet TP loads were record in agriculture at Goma and high values of wet TN in agriculture at Iko. Phosphorus and nitrogen deposition rates around Lake Kivu were similar to those reported for other African lakes. The highest rate of TP was recorded mainly in the forest area for dry deposition while high TN was recorded in all types of land use/cover in the basin. This study found out that forest traps high concentration of nutrient than other land uses/covers.
References
[1]
Williams, M.W. and Tonnessen, K.A. (2000) Critical Loads for Inorganic Nitrogen Deposition in the Colorado Front Range, USA. Ecology Application, 10, 1648-1665. https://doi.org/10.1890/1051-0761(2000)010[1648:CLFIND]2.0.CO;2
[2]
Baron, J.S., Schmidt, T.M. and Hartman, M.D. (2009) Climate Induced Changes in High Elevation Stream Nitrate Dynamics. Global Change Biology, 15, 1777-1789. https://doi.org/10.1111/j.1365-2486.2009.01847.x
[3]
Elser, J.J., Andersen, T., Baron, J.S., Bergstrom, A., Jansson, M., Kyle, M., Nydick, K.R., Steger, L. and Hessen, D.O. (2009) Shifts in Lake N:P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition. Science, 326, 835-837. https://doi.org/10.1126/science.1176199
[4]
Luo, Y., Yang, X., Carley, R.J. and Perkins, C. (2003) Effects of Geographical Location and Land Use on Atmospheric Deposition of Nitrogen in the State of Connecticut. Environmental Pollution, 124, 437-448. https://doi.org/10.1016/S0269-7491(03)00043-5
[5]
Bootsma, H.A., Bootsma, M.J. and Hecky, R.E. (1996) The Chemical Composition of Precipitation and Its Significance to the Nutrient Budget of Lake Malawi. In: Johnson, T.C. and Odada, E.O., Eds., The Limnology, Climatology and Paleoclimatology of East African Lakes, Routledge, London, 251-265. https://doi.org/10.1201/9780203748978-14
[6]
Tamatamah, R., Hecky, R. and Duthie, H. (2005) The Atmospheric Deposition of Phosphorus in Lake Victoria (East Africa). Biogeochemistry, 73, 325-344. https://doi.org/10.1007/s10533-004-0196-9
[7]
Larney, F.J., Bullock, M.S., Janzen, H.H., Ellert, B.H. and Olson, E.C.S. (1998) Wind Erosion Effects on Nutrient Redistribution and Soil Productivity. Journal of Soil Water Conservation, 53, 133-140.
[8]
Shaw, R.D., Trimbee, A.M., Minty, H., Fricker, H. and Prepas, E.E. (1989) Atmospheric Deposition of Phosphorus and Nitrogen in Central Alberta with Emphasis on Narrow Lake. Water Air Soil Pollution, 43, 119-134. https://doi.org/10.1007/BF00175588
[9]
Kocak, M., Kubilay, N. and Mihalopoulos, N. (2004) Ionic Composition of Lower Tropospheric Aerosols at a Northeastern Mediterranean Site: Implications Regarding Sources and Long-Range Transport. Atmospheric Environment, 38, 2067-2077. https://doi.org/10.1016/j.atmosenv.2004.01.030
[10]
Wu, S., Mickley, L.J., Kaplan, J.O. and Jacob, D.J. (2012) Impacts of Changes in Land Use and Land Cover on Atmospheric Chemistry and Air Quality over the 21st Century. Atmospheric Chemistry and Physics, 12, 1597-1609. https://doi.org/10.5194/acp-12-1597-2012
[11]
Delkash, M., Al-Faraj, F.A.M. and Scholz, M. (2018) Impacts of Anthropogenic Land Use Changes on Nutrient Concentrations in Surface Waterbodies: A Review. CLEAN—Soil, Air, Water, 46, Article ID: 1800051. https://doi.org/10.1002/clen.201800051
[12]
Pearson, J. and Stewart, G.R. (1993) The Deposition of Atmospheric Ammonia and Its Effects on Plants. New Phytology, 125, 283-305. https://doi.org/10.1111/j.1469-8137.1993.tb03882.x
[13]
McDowell, R.W. and Sharpley, A.N. (2009) Atmospheric Deposition Contributes Little Nutrient and Sediment to Stream Flow from an Agricultural Basin. Agriculture, Ecosystems and Environment, 134, 19-23. https://doi.org/10.1016/j.agee.2009.06.016
[14]
Lovett, G.M., Traynor, M.M., Pouyat, R.V., Carreiro, M.M., Zhu, W. and Baxter, J.W. (2000) Atmospheric Deposition to Oak Forests along an Urban-Rural Gradient. Environment Science and Technology, 34, 4294-4300. https://doi.org/10.1021/es001077q
[15]
Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J.G., Bai, X.M., Briggs, J. and Golubiewski, N.E. (2008) Global Change and the Ecology of Cities. Science, 319, 756-760. https://doi.org/10.1126/science.1150195
[16]
Lohsea, K.A., Hopea, D., Sponsellera, R., Allend, J.O. and Grimm, N.B. (2008) Atmospheric Deposition of Carbon and Nutrients across an Arid Metropolitan Area. Science of the Total Environment, 402, 95-105. https://doi.org/10.1016/j.scitotenv.2008.04.044
[17]
Delmas, R.A., Loudjani, P., Podaire, A. and Menaut, J. (1991) Biomass Burning in Africa. In: Levine, J.S., Ed., Global Biomass Burning. Atmospheric, Climatic and Biospheric Implications, The MIT Press, Cambridge, 126-132.
[18]
Hao, W.M. and Liu, M.H. (1994) Spatial and Temporal Distribution of Tropical Biomass Burning. Global Biogeochemical Cycles, 8, 495-503. https://doi.org/10.1029/94GB02086
[19]
Tositti, L., Moroni, B., Dinelli, E., Morozzi, P., Brattich, E., Sebastiani, B., Petroselli, C., Crocchianti, S., Selvaggi, R., Enzo, G. and Cappelletti, D. (2020) Deposition Processes over Complex Topographies: Experimental Data Meets Atmospheric Modeling, Science of the Total Environment, 744, Article ID: 140974. https://doi.org/10.1016/j.scitotenv.2020.140974
[20]
Guerrieri, R., Vanguelova, E., Pitman, R., Benham, S., Perks, M., Morison, J.I.L. and Mencuccini, M. (2020) Climate and Atmospheric Deposition Effects on Forest Water-Use Efficiency and Nitrogen Availability across Britain. Scientific Reports, 10, Article No. 12418. https://doi.org/10.1038/s41598-020-67562-w
[21]
Langenberg, V.T., Nyamushahu, S., Roijackers, R. and Koelmans, A.A. (2003) External Nutrient Sources for Lake Tanganyika. Journal of Great Lakes Research, 29, 169-180. https://doi.org/10.1016/S0380-1330(03)70546-2
[22]
Muvundja, A.F., Pasche, N., Bugenyi, W.B.F., Isumbisho, M., Müller, B., Namugize, J.N., Rinta, P., Schmid, M., Stierli, R. and Wüest, A. (2009) Balancing Nutrient Input to Lake Kivu. Journal of Great Lakes Research, 35, 406-418. https://doi.org/10.1016/j.jglr.2009.06.002
[23]
Bagalwa, M., Majaliwa, J.G.M., Mushagalusa, N. and Karume, K. (2013) Estimation of Transported Pollutant Load from Small Urban Kahuwa River Micro-Catchment in Lake Kivu, Democratic Republic of Congo. Journal of Environment Science and Engineering B, 2, 460-472.
[24]
Bagalwa, M., Majaliwa, M., Kansiime, F., Bootsma, H.A., Karume, K. and Mushagalusa, N. (2017) The Atmospheric Deposition of Phosphorus and Nitrogen on Lake Kivu. RUFORUM Working Document Series No. 14(2), 1159-1169.
[25]
Ahn, H. and James, R.T. (2001) Variability, Uncertainty, and Sensitivity of Phosphorus Deposition Load Estimates in South Florida. Water Air Soil Pollution, 126, 37-51. https://doi.org/10.1023/A:1005235118716
[26]
Schlesinger, W.H. (1997) Biogeochemistry: An Analysis of Global Change. Academic, San Diego, 588 p.
[27]
Mahowald, N., Jickells, T.D., Baker, A.R., Artaxo, P., Benitez-Nelson, C.R., Bergametti, G., Bond, T.C., Chen, Y., Cohen, D.D., Herut, B., Kubilay, N., Losno, R., Luo, C., Maenhaut, W., McGee, K.A., Okin, G.S., Siefert, R.L. and Tsukuda, S. (2008) The Global Distribution of Atmospheric Phosphorus Deposition and Anthropogenic Impacts. Global Biogeochemical Cycle, 22, GB4026. https://doi.org/10.1029/2008GB003240
[28]
Natacha, P., Muvundja, A.F., Schimid, M., Wuest, A. and Muller, B. (2012) Nutrient Cycling in Lake Kivu. In: Descy, J.P., Darchambeau, F. and Schimid, M., Eds., Lake Kivu: Limnology and Biogeochemistry of a Tropical Great Lake, Aquatic Ecology Series 5, Springer, Berlin, 31-46. https://doi.org/10.1007/978-94-007-4243-7_3
Erisman, J.W., Bleeker, A., Galloway, J. and Sutton, M.A. (2007) Reduced Nitrogen in Ecology and the Environment. Environment Pollution, 150, 140-149. https://doi.org/10.1016/j.envpol.2007.06.033
[31]
Zhang, Y., Wu, S.-Y., Hu, J., Krishnan, S., Wang, K., Queen, A., Aneja, V.P. and Arya, P. (2008) Modeling Agricultural Air Quality: Current Status, Major Challenges, and Outlook. Atmospheric Environment, 42, 3218-3237. https://doi.org/10.1016/j.atmosenv.2007.01.063
[32]
Aneja, V.P., Schlesinger, W., Erisman, J.W., Behera, S.N., Sharma, M. and Battye, W. (2012) Reactive Nitrogen Emissions from Crop and Livestock Farming in India. Atmospheric Environment, 47, 92-103. https://doi.org/10.1016/j.atmosenv.2011.11.026
[33]
Sims, L., Pastor, J., Lee, T. and Dewey, B. (2012) Nitrogen, Phosphorus and Light Effects on Growth and Allocation of Biomass and Nutrients in Wild Rice. Oecologia, 170, 65-76. https://doi.org/10.1007/s00442-012-2296-x
[34]
Latzel, V., Klimesova, J., Hájek, T., Gomez, S. and Smilauer, P. (2010) Maternal Effects Alter Progeny’s Response to Disturbance and Nutrients in Two Plantago Species. Oikos, 119, 1700-1710. https://doi.org/10.1111/j.1600-0706.2010.18737.x
[35]
Lasso, E. and Ackerman, J.D. (2013) Nutrient Limitation Restricts Growth and Reproductive Output in a Tropical Montane Cloud Forest Bromeliad: Findings from a Long-Term Forest Fertilization Experiment. Oecologia, 171, 165-174. https://doi.org/10.1007/s00442-012-2403-z
[36]
LeBauer, D.S. and Treseder, K.K. (2008) Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology, 89, 371-379. https://doi.org/10.1890/06-2057.1
[37]
Niu, S., Wu, M., Han, Y., Xia, J., Zhang, Z., Yang, H. and Wan, S. (2010) Nitrogen Effects on Net Ecosystem Carbon Exchange in a Temperate Steppe. Global Change Biology, 16, 144-155. https://doi.org/10.1111/j.1365-2486.2009.01894.x
[38]
Bhattarai, S., Ross, K.A., Schmid, M., Anselmetti, F.S. and Bürgmann, H. (2012) Local Conditions Structure Unique Archaeal Communities in the Anoxic Sediments of Meromictic Lake Kivu. Microbial Ecology, 64, 291-300. https://doi.org/10.1007/s00248-012-0034-x
[39]
Olapade, O.J. (2012) Anthropogenic Pollution Impact on Microbial Contamination of Lake Kivu, Rwanda. West African Journal of Applied Ecology, 20, 23-31.
[40]
Schmid, M., Busbridge, M. and Wuest, A. (2010) Double-Diffusive Convection in Lake Kivu. Limnology and Oceanography, 55, 225-238. https://doi.org/10.4319/lo.2010.55.1.0225
[41]
Borges, A.V., Abril, G., Delille, B., Descy, J.P. and Darchambeau, F. (2011) Diffusive Methane Emission to the Atmosphere from Lake Kivu (Eastern Africa). Journal of geophysical Research, 116, G03032. https://doi.org/10.1029/2011JG001673
[42]
Maongo, T. (2007) Some Characteristics of Aftershock Sequences of Major Earthquakes from 1994 to 2002 in the Kivu Province, Western Rift Valley of Africa. Tectonophysics, 439, 1-12. https://doi.org/10.1016/j.tecto.2007.01.006
[43]
Muvundja, A. (2015) Hydrological Variability and Biogeochemistry of Particulate Organic Matter of a Large Tropical Rift Lake, Lake Kivu (East Africa). PhD Thesis, Universite de Namur, Belgique, 189 p.
[44]
Bagalwa, M., Majaliwa, J.G.M., Kansiime, F., Bashwira, S., Tenywa, M. and Karume K. (2015) Sediment and Nutrient Loads into River Lwiro, in the Lake Kivu Basin, Democratic Republic of Congo. International Journal of Biological and Chemical Sciences, 9, 1678-1690. https://doi.org/10.4314/ijbcs.v9i3.46
[45]
Bagalwa, M., Majaliwa, M.J.G., Kansiime, F., Bashwira, S., Tenywa, M., Karume, K. and Adipala, E. (2016) Land Use and Land Cover Change Detection in Rural Areas of River Lwiro Micro-Catchment, Lake Kivu, Democratic Republic of Congo. Journal of Scientific Research & Reports, 9, 1-10. https://doi.org/10.9734/JSRR/2016/15850
[46]
Anatolaki, Ch. and Tsitouridou, R. (2009) Relationship between Acidity and Ionic Composition of Wet Precipitation: A Two Years Study at an Urban Site, Thessaloniki, Greece. Atmospheric Research, 92, 100-113. https://doi.org/10.1016/j.atmosres.2008.09.008
[47]
Anatolaki, Ch. and Tsitouridou, R. (2007) Atmospheric Deposition of Nitrogen, Sulfur and Chloride in Thessaloniki, Greece. Atmospheric Research, 85, 413-428. https://doi.org/10.1016/j.atmosres.2007.02.010
[48]
APHA (American Public Health Association) (1989) Standard Methods for the Examination of Water and Wastewater. 18th Edition, Washington DC, 1587.
[49]
Wetzel, R.G. and Likens, G.E. (2000) Limnological Analysis. Springer, Berlin, 429 p. https://doi.org/10.1007/978-1-4757-3250-4
[50]
Bootsma, H.A. and Hecky, R.E. (1993) Conservation of the African Great Lakes: A Limnological Perspective. Conservation Biology, 7, 644-656. https://doi.org/10.1046/j.1523-1739.1993.07030644.x
[51]
Vuai, S.A.H., Ibembe, J.D. and Mungai, N.W. (2013) Influence of Land Use Activities on Spatial and Temporal Variation of Nutrient Deposition in Mwanza Region: Implication to the Atmospheric Loading to the Lake Victoria. Atmospheric and Climate Sciences, 3, 224-234. https://doi.org/10.4236/acs.2013.32024
[52]
Bootsma, H.A., Mwita, J., Mwichande, B., Hecky, R.E., Kihedu, J. and Mwambungu, J. (1999) The Atmospheric Deposition of Nutrients on Lake Malawi/Nyassa. In: Bootsma, H.A. and Hecky, R.E., Eds., Water Quality Report, Lake Malawi/Nyassa Biodiversity Conservation Project, Southern Africa Development Community/Global Environmental Facility, 85-111.
[53]
Mahowald, N.M., Artaxo, P., Baker, A.R., Jickells, T.D., Okin, G.S., Randerson, J.T. and Townsend, A.R. (2005) Impacts of Biomass Burning Emissions and Land Use Change on Amazonian Atmospheric Phosphorus Cycling and Deposition. Global Biogeochemistry Cycles, 19, GB4030. https://doi.org/10.1029/2005GB002541
[54]
Graham, W.F. and Duce, R.A. (1979) Atmospheric Pathways of the Phosphorus Cycle. Geochimica et Cosmochimica Acta, 43, 1195-1208. https://doi.org/10.1016/0016-7037(79)90112-1
[55]
Graham, W.F. and Duce, R.A. (1982) The Atmospheric Transport of Phosphorus to the Western North Atlantic. Atmospheric Environment, 16, 1089-1097. https://doi.org/10.1016/0004-6981(82)90198-6
[56]
Kollher, S., Jungkunsi, H.F., Erasmi, S. and Gerold, G. (2013) The Effect of Land Use Change on Atmospheric Nutrient Deposition in Central Sulawesi. Erdkunde, 2, 109-122. https://doi.org/10.3112/erdkunde.2013.02.01
[57]
Balagizi, M.C., Kasereka, M.M., Cuoco, E. and Liotta, M. (2018) Influence of Moisture Source Dynamics and Weather Patterns on Stable Isotopes Ratios of Precipitation in Central-Eastern Africa. Science of the Total Environment, 628-629, 1058-1078. https://doi.org/10.1016/j.scitotenv.2018.01.284
[58]
Andreae, M.O. (1993) Global Distribution of Fires as Seen from Space. EOS, Transactions, American Geophysical Union, 74, 129-135. https://doi.org/10.1029/93EO00166
[59]
Behera, S.N., Sharma, M., Aneja, V.P. and Balasubramanian, R. (2013) Ammonia in the Atmosphere: A Review on Emission Sources, Atmospheric Chemistry and Deposition on Terrestrial Bodies. Environment Science Pollution Research, 20, 8092-8131. https://doi.org/10.1007/s11356-013-2051-9
[60]
Cuoco, E., Spagnuolo, A., Balagizi, C., De Francesco, S., Tassi, F., Vaselli, O. and Tedesco, D. (2013) Impact of Volcanic Emissions on Rainwater Chemistry: The Case of Mt. Nyiragongo in the Virunga Volcanic Region (DRC). Journal of Geochemical Exploration, 125, 69-79. https://doi.org/10.1016/j.gexplo.2012.11.008
[61]
Zirirane, N.D., Majaliwa, M.J.G., Muhigwa, B.J.B., Karume, K. and Bagalwa, M. (2014) Effet des flux d’eau sur la capacité de rétention des marais Ciranga et Kabamba, Lac Kivu, République Démocratique du Congo. Afrique SCIENCE, 10, 169-179. https://doi.org/10.4000/vertigo.16027
[62]
Zirirane, N., Majaliwa, J.G.M., Muhigwa, B.J.B., Mushagalusa, N.G., Karume, K. and Bagalwa, M. (2015) Efficacité de rétention des polluants par les marais Ciranga et Kabamba du Lac Kivu, République Démocratique du Congo. VertigO-la revue électronique en sciences de l’environnement, 15, 15 p. https://doi.org/10.4000/vertigo.16027
[63]
Lacaux, J.P., Loemba-Ndembi, J., Lefeive, B., Cros, B. and Delmas, R. (1992) Biogenic Emissions and Biomass Burning Influences on the Chemistry of Fog Water and Stratiform Precipitation in the African Equatorial Forest. Atmospheric Environment A, 26, 541-551. https://doi.org/10.1016/0960-1686(92)90167-J
[64]
Artaxo, P.R.C., Ferdinards, E.T., Martiens, J.V., Lindquist, O.F., Jimenez, M.T. and Maenhaut, W. (2000) Large Scale Mercury and Trace Element and Measurements in the Amazon Basin. Atmospheric Environment, 34, 4085-4096. https://doi.org/10.1016/S1352-2310(00)00106-0