The equation of motion for a relativistic neutral particle that moves in a medium characterized by a friction proportional to the square of the velocity is analyzed. The relativistic trajectory is derived in a numerical way and in the form of a Taylor series. The astrophysical applications cover the trajectory of SN 1993J and the light curve of gamma ray bursts.
References
[1]
Earl, J.A., Jokipii, J.R. and Morfill, G. (1988) Cosmic-Ray Viscosity. The Astrophysical Journal Letters, 331, L91-L94. https://doi.org/10.1086/185242
[2]
Rieger, F. and Duffy, P. (2007) Cosmic-Ray Acceleration and Viscosity. In: Aschenbach, B., Burwitz, V., Hasinger, G. and Leibundgut, B., Eds., Relativistic Astrophysics Legacy and Cosmology—Einstein’s, Springer, Berlin, 477-479. https://doi.org/10.1007/978-3-540-74713-0_110
[3]
Webb, G.M., Barghouty, A.F., Hu, Q. and le Roux, J.A. (2018) Particle Acceleration Due to Cosmic-Ray Viscosity and Fluid Shear in Astrophysical Jets. The Astrophysical Journal, 855, 31. https://doi.org/10.3847/1538-4357/aaae6c
[4]
Dedkov, G. and Kyasov, A. (2010) Tangential Force and Heating Rate of a Neutral Relativistic Particle Mediated by Equilibrium Background Radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 599. https://doi.org/10.1016/j.nimb.2009.12.011
[5]
Volokitin, A.I. (2015) Blackbody Friction Force on a Relativistic Small Neutral Particle. Physical Review A, 91, Article ID: 032505. https://doi.org/10.1103/PhysRevA.91.032505
[6]
Kolekar, S., Shankaranarayanan, S. and Chitre, S.M. (2020) Generation of CMB and Cosmological Constant via Bulk Viscosity. General Relativity and Gravitation, 52, 98. https://doi.org/10.1007/s10714-020-02749-0
[7]
López, G.V., Montes, G.C. and Zanudo, J.G.T. (2015) One Dimensional Relativistic Free Particle in a Quadratic Dissipative Medium. Journal of Modern Physics, 6, 121-125. https://doi.org/10.4236/jmp.2015.62016
[8]
French, A.P. (1968) Special Relativity. CRC, New York.
[9]
De Young, D.S. (2002) The Physics of Extragalactic Radio Sources. University of Chicago Press, Chicago.
[10]
Mihalas, D. and Mihalas, B. (2013) Foundations of Radiation Hydrodynamics. Dover Books on Physics, Dover Publications, New York.
[11]
Zaninetti, L. (2021) Energy Conservation in the Thin Layer Approximation: IV. The Light Curve for Supernovae. International Journal of Astronomy and Astrophysics, 11, 37. https://doi.org/10.4236/ijaa.2021.111003
[12]
Marcaide, J.M., Mart-Vidal, I., Alberdi, A. and Pérez-Torres, M.A. (2009) A Decade of SN 1993J: Discovery of Radio Wavelength Effects in the Expansion Rate. A&A, 505, 927. https://doi.org/10.1051/0004-6361/200912133
[13]
Mart-Vidal, I., Marcaide, J.M., Alberdi, A., Guirado, J.C., Pérez-Torres, M.A. and Ros, E. (2011) Radio Emission of SN1993J: The Complete Picture. II. Simultaneous Fit of Expansion and Radio Light Curves A & A, 526, A143. https://doi.org/10.1051/0004-6361/201014517
[14]
De Pasquale, M., Page, M., Kann, D., Oates, S., Schulze, S., Zhang, B., Cano, Z., Gendre, B., Malesani, D., Rossi, A., Gehrels, N., Troja, E., Piro, L., Boër, M. and Stratta, G. (2017) Challenging the Forward Shock Model with the 80 Ms Follow up of the X-Ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 5, 6. https://doi.org/10.3390/galaxies5010006
[15]
Cano, Z., Bersier, D., Guidorzi, C., et al. (2011) A Tale of Two GRB-SNe at a Common Redshift of z = 0.54. MNRAS, 413, 669.