Mayr et al. [1] proposed that the vertical velocities in the global scale meridional circulation can produce distinct latitude bands where Jovian vortices like the white and brown are observed, and we present here a brief review of the mechanism. The observed life times of the ovals are much longer than the estimated spin-down times, which indicates that the vortices must be sustained through the release of internal energy. Like Jupiter’s Great Red Spot (GRS), the white/brown ovals are treated like terrestrial hurricanes or cyclones, which are generated by convection. The planetary energy Jupiter emits is transferred by convection, and under this condition the upward motions in the meridional circulation, around the equator for example, release energy from below and decrease the convective instability to suppress the formation of cyclones. But the downward motions in the circulation, near 20° latitude for example, carry energy down so that the convective instability is amplified to produce a dynamical environment that is favorable for the development of cyclones like the GRS and white/brown ovals. This picture is supported by an analysis of results from a numerical model of Jupiter’s alternating jets (Chan and Mayr [2]). Generated by alternating vertical winds in the meridional circulation, the vertical temperature variations reveal distinct latitude bands with enhanced convective instability, most prominent at high latitudes where long-lived circumpolar cyclones are observed from the Juno spacecraft.
References
[1]
Mayr, H.G., Maeda, K. and Harris, I. (1985) Conjecture about a Hurricane System in the Jovian Atmosphere. Earth Moon Planets, 32, 183-192. https://doi.org/10.1007/BF00054175
[2]
Chan, K.L. and Mayr, H.G. (2008) A Shallow Convective Model for Jupiter’s Alternating Wind Bands. Journal of Geophysical Research, 113, E10002. https://doi.org/10.1029/2008JE003124
[3]
Smith, B.A., Soderblom, L.A., Johnson, T.V., Ingersoll, A.P., Collins, S.A., Shoemaker, E.M., Hunt, G.E., Masursky, H., Carr, M.H., Davies, M.E., Cook, A.F., Boyce, J., Danielson, G.E., Owen, T., Sagan, C., Beebe, R.F., Veverka, J., Strom, R.G., McCauley, J.F., Morrison, D., Briggs, G.A. and Suomi, V.E. (1979) The Jupiter System through the Eyes of Voyager 1. Science, 204, 951-972. https://doi.org/10.1126/science.204.4396.951
[4]
Smith, B.A., Beebe, R., Boyce, J., Briggs, G., Carr, M., Collins, S.A., Cook II, A.F., Danielson, G.E., Davies, M.E., Hunt, G.E., Ingersoll, A., Johnson, T.V., Masursky, H., McCauley, J., Morrison, D., Owen, T., Sagan, C., Shoemaker, E.M., Strom, R., Suomi, V.E. and Veverka, J. (1979) The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results. Science, 206, 927-950. https://doi.org/10.1126/science.206.4421.927
[5]
Mitchell, J.L., Beebe, R.F., Ingersoll, A.P. and Garneau, G.W. (1981) Flow Fields within Jupiter’s Great Red Spot and White Oval. Journal of Geophysical Research, 86, 8751-8757. https://doi.org/10.1029/JA086iA10p08751
[6]
Simon-Miller, A.A., Gierasch, P.J., Beebe, R.F., Conrath, B., Flasar, F.M., Achterberg, R.K. and the Cassini CIRS Team (2002) New Observational Results Concerning Jupiter’s Great Red Spot. Icarus, 158, 249-266. https://doi.org/10.1006/icar.2002.6867
[7]
Porco, C.C., West, R.A., McEwen, A., Del Genio, A.D., Ingersoll, A.P., Thomas, P., Squyres, S., Dones, L., Murray, C.D., Johnson, T.V., Burns, J.A., Brahic, A., Neukum, G., Veverka, J., Barbara, J.M., Denk, T., Evans, M., Ferrier, J.J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M. and Vasavada, A.R. (2003) Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science, 299, 1541-1547. https://doi.org/10.1126/science.1079462
[8]
Sánchez-Lavega, A., Hueso, R., Eichstädt, G., Orton, G., Rogers, J., Hansen, C., Momary, T., Tabataba-Vakili, F. and Bolton, S. (2018) The Rich Dynamics of Jupiter’s Great Red Spot from JunoCam: Juno Images. The Astronomical Journal, 156, 162. https://doi.org/10.3847/1538-3881/aada81
[9]
Galanti, E., Kaspi, Y., Simons, F., Durante, D., Parisi, M. and Bolton, S. (2019) Determining the Depth of Jupiter’s Great Red Spot with Juno: A Slepian Approach. The Astronomical Journal Letters, 874, L24. https://doi.org/10.3847/2041-8213/ab1086
[10]
Tabataba-Vakili, F., Rogers, J., Eichstaedt, G., Orton, G., Hansen, C., Momary, T., Sinclair, J., Giles, R., Caplinger, M., Ravine, M. and Bolton, S. (2020) Long-Term Tracking of Circumpolar Cyclones on Jupiter from Polar Observations with JunoCam. Icarus, 335, Article ID: 113405. https://doi.org/10.1016/j.icarus.2019.113405
[11]
Marcus, P.S. (1988) Numerical Simulation of Jupiter’s Great Red Spot. Nature, 331, 693-696. https://doi.org/10.1038/331693a0
[12]
Marcus, P.S., Kundu, T. and Lee, C. (2000) Vortex Dynamics and Zonal Flows. Physics of Plasmas, 7, 1630-1640. https://doi.org/10.1063/1.874045
[13]
Marcus, P.S., Pei, S., Jiang, C.H. and Hassanzadeh, P. (2013) Three Dimensional Vortices Generated by Self-Replication in Stably Stratified Rotating Shear Flows. Physical Review Letters, 111, Article ID: 084501. https://doi.org/10.1103/PhysRevLett.111.084501
[14]
Showman, A.P., Gierasch, P.J. and Lian, Y. (2006) Deep Zonal Winds Can Result from Shallow Driving in a Giant-Planet Atmosphere. Icarus, 182, 513-526. https://doi.org/10.1016/j.icarus.2006.01.019
[15]
Showman, A.P. (2007) Numerical Simulations of Forced Shallow-Water Turbulence: Effects of Moist Convection on the Large-Scale Circulation of Jupiter and Saturn. Journal of the Atmospheric Sciences, 64, 3132-3157. https://doi.org/10.1175/JAS4007.1
[16]
Mayr, H.G., Harris, I. and Chan, K.L. (1984) Differential Rotation in a Solar-Driven Quasi-Axisymmetric Circulation. Earth Moon Planets, 30, 245-274. https://doi.org/10.1007/BF00056202
[17]
Ingersoll, A.P., Gierasch, P.J., Banfield, D. and Vasavada, A.R. (2000) Galileo Imaging Team: Moist Convection as an Energy Source for the Large-Scale Motions in Jupiter’s Atmosphere. Nature, 403, 630-632. https://doi.org/10.1038/35001021
[18]
Zhang, K. and Schubert, G. (2000) Tele-Convection: Remotely Driven Thermal Convection in Rotating Stratified Spherical Layers. Science, 290, 1944. https://doi.org/10.1126/science.290.5498.1944
[19]
Christensen, U.R. (2001) Zonal Flow Driven by Deep Convection in the Major Planets. Geophysical Research Letters, 28, 2553-2556. https://doi.org/10.1029/2000GL012643
[20]
Aurnou, J.M. and Olson, P.I. (2001) Strong Zonal Winds from Thermal Convection in a Rotating Spherical Shell. Geophysical Research Letters, 28, 2557-2559. https://doi.org/10.1029/2000GL012474
[21]
Heimpel, M. and Aurnou, J. (2007) Turbulent Convection in a Rapidly Rotating Spherical Shell: A Model for Equatorial and High Latitude Jets on Jupiter and Saturn. Icarus, 187, 540-557. https://doi.org/10.1016/j.icarus.2006.10.023
[22]
Chan, K.L. and Mayr, H.G. (2013) Numerical Simulation of Convectively Generated Vortices: Application to the Jovian Planets. Earth and Planetary Science Letters, 71, 212-219. https://doi.org/10.1016/j.epsl.2013.03.046
[23]
Kuiper, G.P. (1972) Lunar and Planetary Laboratory Studies of Jupiter. Sky and Telescope, 43, 75-81.
[24]
Charney, J.G. and Eliassen, A. (1964) On the Growth of the Hurricane Depression. Journal of the Atmospheric Sciences, 21, 68-75. https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
[25]
Ooyama, K. (1969) Numerical Simulation of the Life Cycle of Tropical Cyclones. Journal of the Atmospheric Sciences, 26, 3-40. https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
[26]
Holton, J.R. (1975) The Dynamic Meteorology of the Stratosphere and Mesosphere. American Meteorological Society, Meteorological Monograph, Volume 15, Issue 37, Boston. https://doi.org/10.1007/978-1-935704-31-7
[27]
Holton, J.R. (1979) An Introduction to Dynamic Meteorology. Academic Press, New York.
[28]
Hanel, R., Conrath, B., Flaser, M., Kunde, V., Lowman, P., Maguire, W., Pearl, J., Pirraglia, J., Samuelson, R., Gautier, D., Gierasch, P., Kumar, S. and Ponnamperuma, C. (1979) Infrared Observations of the Jovian System from Voyager 1. Science, 204, 972-976. https://doi.org/10.1126/science.204.4396.972-a
[29]
Hanel, R., Conrath, B., Flaser, M., Herath, L., Lia, V., Samuelson, R., Gautier, D., Gierasch, P., Horn, L., Kumar, S. and Ponnamperuma, C. (1979) Infrared Observations of the Jovian System from Voyager 2. Science, 206, 952-956. https://doi.org/10.1126/science.206.4421.952
[30]
Mayr, H.G. and Harris, I. (1983) Quasi-Axisymmetric Circulation and Superrotation in Planetary Atmospheres. Astronomy & Astrophysics, 121, 124-136.
[31]
Chan, K.L., Mayr, H.G., Mengel, J.G. and Harris, I. (1994) A “Stratified” Spectral Model for Stable and Convective Atmospheres. Journal of Computational Physics, 113, 165-176. https://doi.org/10.1006/jcph.1994.1128
[32]
Chan, K.L. and Mayr, H.G. (2008) Convective Models of Jupiter’s Wind Bands: Transition from Deep to Shallow Envelopes. 40th Annual Meeting of Division for Planetary Sciences of American Astronomical Society, Ithaca, 10-15 October 2008.
[33]
Hassanzadeh, P. and Marcus, P.S. (2013) On the Unexpected Longevity of the Great Red Spot, Oceanic Eddies, and Other Baroclinic Vortices. Abstract of the American Physical Society’s Division of Fluid Dynamics Meeting, Pittsburgh, 24-26 November 2013.