Considering the great potential of composite electrode with carbon and
transition metal oxides as a future ideal form of electrode for future energy
storing system, many efforts have been devoted into such aspect of research.
Sweet potato-derived carbon framework with nanosheet form of MnO2 anchored on it was carried out through the low-temperature solution grown
technique, which is simple, low-cost, and applicable for large-scale commercial
production. Such form of composite electrode can facilitate the inner
transportation of electrons and ions, and offer high specific capacitance (309 F/g
at 0.5 A/g) with comparable discharging rate capability (94 F/g at 20 A/g),
which reasonably can be regarded as a superior form of composite electrode.
References
[1]
Zhu, Q.C., Zhao, D.Y., Cheng, M.Y., Zhou, J.Q., Owusu, K.A., Mai, L.Q. and Yu, Y. (2019) A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 9, Article ID: 1901081. https://doi.org/10.1002/aenm.201901081
[2]
Wang, G.P., Zhang, L. and Zhang, J.J. (2012) A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews, 41, 797-828. https://doi.org/10.1039/C1CS15060J
Xiao, J.W., Wan, L., Yang, S.H., Xiao, F. and Wang, S. (2014) Design Hierarchical Electrodes with Highly Conductive NiCo2S4 Nanotube Arrays Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Letters, 14, 831-838. https://doi.org/10.1021/nl404199v
[5]
Ge, J., Yao, H.B., Hu, W., Yu, X.F., Yan, Y.X., Mao, L.B., Li, H.H., Li, S.S. and Yu, S.H. (2013) Facile Dip Coating Processed Graphene/MnO2 Nanostructured Sponges as High Performance Supercapacitor Electrodes. Nano Energy, 2, 505-513. https://doi.org/10.1016/j.nanoen.2012.12.002
Cheng, Y.W., Lu, S.T., Zhang, H.B., Varanasi, C.V. and Liu, J. (2012) Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. Nano Letters, 12, 4206-4211. https://doi.org/10.1021/nl301804c
[8]
El-Kady, M.F., Ihns, M., Li, M.P., Hwang, J.Y., Mousavi, M.F., Chaney, L., Lech, A.T. and Kaner, R.B. (2015) Engineering Three-Dimensional Hybrid Supercapacitors and Microsupercapacitors for High-Performance Integrated Energy Storage. Proceedings of the National Academy of Sciences of the United States of America, 112, 4233-4238. https://doi.org/10.1073/pnas.1420398112
[9]
Wu, P., Cheng, S., Yang, L.F., Lin, Z.Q., Gui, X.C., Ou, X., Zhou, J., Yao, M.H., Wang, M.K., Zhu, Y.Y. and Liu, M.L. (2016) Synthesis and Characterization of Self-Standing and Highly Flexible delta-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 8, 23721-23728. https://doi.org/10.1021/acsami.6b07161
[10]
Guo, W., Yu, C., Li, S.F., Wang, Z., Yu, J.H., Huang, H.W. and Qiu, J.S. (2019) Strategies and Insights towards the Intrinsic Capacitive Properties of MnO2 for Supercapacitors: Challenges and Perspectives. Nano Energy, 57, 459-472. https://doi.org/10.1016/j.nanoen.2018.12.015
[11]
Zhou, X.L., Zhang, H., Shao, L.M., Lu, F. and He, P.J. (2021) Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste and Biomass Valorization, 12, 1699-1724. https://doi.org/10.1007/s12649-020-01109-y
[12]
Wang, X.H., Li, X.S., Ge, W.J. and Yang Y. (2019) Progress in Biomass-Derived Carbon Materials/MnO2 Composite and Its Application in Supercapacitors. Journal of Forestry Engineering, 4, 1-10.
[13]
Xiao, K., Ding, L.X., Chen, H.B., Wang, S.Q., Lu, X.H. and Wang, H.H. (2016) Nitrogen-Doped Porous Carbon Derived from Residuary Shaddock Peel: A Promising and Sustainable Anode for High Energy Density Asymmetric Supercapacitors. Journal of Materials Chemistry A, 4, 372-378. https://doi.org/10.1039/C5TA08591H
[14]
Deng, X.C., Bai, X.J., Cai, Z.H., Huang, M.J., Chen, X.R., Huang, B. and Chen, Y.D. (2020) Renewable Carbon Foam/Delta-MnO2 Composites with Well-Defined Hierarchical Microstructure as Supercapacitor Electrodes. Journal of Materials Research and Technology, 9, 8544-8555. https://doi.org/10.1016/j.jmrt.2020.05.130
[15]
Zhang, W.K., Peng, L., Wang, J.W., Guo, C.L., Chan, S.H. and Zhang, L. (2020) High Electrochemical Performance of Bi2WO6/Carbon Nano-Onion Composites as Electrode Materials for Pseudocapacitors. Frontiers in Chemistry, 8, 577. https://doi.org/10.3389/fchem.2020.00577
[16]
Zhai, T., Xie, S. L., Yu, M.H., Fang, P.P., Liang, C.L., Lu, X.H. and Tong, Y.X. (2014) Oxygen Vacancies Enhancing Capacitive Properties of MnO2 Nanorods for Wearable Asymmetric Supercapacitors. Nano Energy, 8, 255-263. https://doi.org/10.1016/j.nanoen.2014.06.013
[17]
Zhou, W., Lei, S.J., Sun, S.Q., Ou, X.L., Fu, Q., Xu, Y.L., Xiao, Y.H. and Cheng, B.C. (2018) From Weed to Multi-Heteroatom-Doped Honeycomb-Like Porous Carbon for Advanced Supercapacitors: A Gelatinization-Controlled One-Step Carbonization. Journal of Power Sources, 402, 203-212. https://doi.org/10.1016/j.jpowsour.2018.09.044