Expressions are obtained for the shortened Maxwell’s equations simulating the evolution of the ultrashort pulses propagating in anisotropic dipole-active crystals in stimulated Raman scattering (SRS) by polaritons. The developed theory considers the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is approximated by a linearly polarized plane electromagnetic wave. The possibility of simultaneous propagation of pulses on both different frequencies (pump and Stokes) and different polarization (simultons) is theoretically shown. It is also shown that the expression for the gain factor g in SRS is consistent with the experimental results for the spectra of ZnS.
References
[1]
Rosas, A.F., Hernández, O.D., Arceo, R., Santos, G.J.E., Vázquez, S.M., álvarez, E.R., Flores, C.I.E. and Kuzin, E. (2018) Polarization Properties, Nonlinear Optics—Novel Results in Theory and Application.
[2]
Millot, G., TchofoDinda, P., Seve, E. and Wabnitz, S. (2001) Modulational Instability and Stimulated Raman Scattering in Normally Dispersive Highly Birefringent Fibers. Optical Fiber Technology, 7, 170-205. https://doi.org/10.1006/ofte.2000.0356
[3]
Cheng, T.L., Wang, Q.M., Yan, X., Wang, F., Zhang, X.N., Li, S.G., Suzuki, T. and Ohishi, Y. (2020) Experimental Investigation of the Polarization Modulation Instability and Stimulated Raman Scattering in a Chalcogenide Optical Fiber. Journal of Applied Physics, 128, Article ID: 193103. https://doi.org/10.1063/5.0022957
[4]
Flores-Rosas, A., Kuzin Evgeny, A., Arceo, R., Díaz-Hernán, O., Ruiz-Pérez, V.I. and Escalera-Santos, G.J. (2017) Polarization Properties of Vector Solitons Generated by Modulation Instability in Fiber with Circular Birefringence. Optical Engineering, 56, Article ID: 036115. https://doi.org/10.1117/1.OE.56.3.036115
[5]
Ortiz-Mora, A., Rodríguez, P., Díaz-Soriano, A., Martínez-Muñoz, D. and Dengra, A. (2020) Method of Moments Optimization of Distributed Raman Amplification in Fibers with Randomly Varying Birefringence. Photonics, 7, 86. https://doi.org/10.3390/photonics7040086
[6]
Kaplan, A.E., Shkolnikov, P.L. and Akanaev, B.A. (1994) Bright-Bright 2π Solitons in Stimulated Raman Scattering. Optics Letters, 19, 445-447. https://doi.org/10.1364/OL.19.000445
[7]
Boiti, M., Caputo, J.-G., Leon, J. and Pempinelli, F. (2000) Raman Solitons in Transient SRS. Inverse Problems, 16, 303. https://doi.org/10.1088/0266-5611/16/2/303
[8]
Kalashnikov, V.L. and Sorokin, E. (2014) Dissipative Raman Solitons. Optics Express, 22, 30118-30126. https://doi.org/10.1364/OE.22.030118
[9]
Karpov, M., Pfeiffer Martin, H.P., Guo, H.R., Weng, W.L., Liu, J.Q. and Kippenberg, T.J. (2019) Dynamics of Soliton Crystals in Optical Micro-Resonators. Nature Physics, 15, 1071-1077.
[10]
Frank, M., Smetanin, S.N., Jelinek, M., Vyhlidal, D., Shukshin, V.E., Ivleva, L.I., Dunaeva, E.E., Voronina, I.S., Zverev, P.G. and Kubecek, V. (2019) Stimulated Raman Scattering in Alkali-Earth Tungstate and Molybdate Crystals at Both Stretching and Bending Raman Modes under Synchronous Picosecond Pumping with Multiple Pulse Shortening Down to 1 ps. Crystals, 9, 167. https://doi.org/10.3390/cryst9030167
[11]
Hill, A.H., Munger, E., Francis, A.T., Manifold, B. and Fu, D. (2019) Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding. The Journal of Physical Chemistry B, 123, 8397-8404. https://doi.org/10.1021/acs.jpcb.9b07075
[12]
Chen, T., Yavuz, A. and Wang, M.C. (2021) Dissecting Lipid Droplet Biology with Coherent Raman Scattering Microscopy. Journal of Cell Science, 135, No. 5. https://doi.org/10.1242/jcs.252353
[13]
Xiong, H.Q., Qian, N.X., Miao, Y.P., Zhao, Z.L., Chen, C. and Min, W. (2021) Super-Resolution Vibrational Microscopy by Stimulated Raman Excited Fluorescence. Light: Science & Applications, 10, Article No. 87. https://doi.org/10.1038/s41377-021-00518-5
[14]
Li, Y.P., Shen, B.L., Zou, G.J., Wang, S.Q., Qu, J.L., Hu, R. and Liu, L.W. (2021) Fast Denoising and Lossless Spectrum Extraction in Stimulated Raman Scattering Microscopy. Journal of Biophotonics, 14, e202100080.
[15]
Jiang, J., Grass, D., Zhou, Y., Warren, W.S. and Fischer, M.C. (2021) Beyond Intensity Modulation: New Approaches to Pump-Probe Microscopy. Optics Letters, 46, 1474. https://doi.org/10.1364/OL.417905
[16]
Lee, M., Herrington, C.S., Ravindra, M., Sepp, K., Davies, A., Hulme, A.N. and Brunton, V.G. (2021) Recent Advances in the Use of Stimulated Raman Scattering in Histopathology. The Analyst, 146, 789-802. https://doi.org/10.1039/D0AN01972K
[17]
Xiong, H.Q., Qian, N.X., Zhao, Z.L., Shi, L.Y., Miao, Y.P. and Min, W. (2020) Background-Free Imaging of Chemical Bonds by a Simple and Robust Frequency-Modulated Stimulated Raman Scattering Microscopy. Optics Express, 28, 15663-15677. https://doi.org/10.1364/OE.391016
[18]
Dong, P.-T., Zong, C., Dagher, Z., Hui, J., Li, J.J., Zhan, Y.W., Zhang, M., Mansour, M.K. and Cheng, J.-X. (2021) Polarization-Sensitive Stimulated Raman Scattering Imaging Resolves Amphotericin B Orientation in Candida Membrane. Science Advances, 7, eabd5230. https://doi.org/10.1126/sciadv.abd5230
[19]
Angelakis, D.G. (2017) Quantum Simulations with Photons and Polaritons. Springer, Berlin. https://doi.org/10.1007/978-3-319-52025-4
[20]
Burstein, E., Ushioda, S. and Pinczuk, A. (1968) Raman Scattering by Polaritons. Solid State Communications, 6, 407-411. https://doi.org/10.1016/0038-1098(68)90168-3
[21]
Claus, R., Merten, l. and Brandmuller, J. (1975) Light Scattering by Phonon-Polaritons. Springer, Berlin.
[22]
Agranovich, V. (1982) Surface Polaritons. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-86165-8.50006-2
[23]
Cottam, M.G. and Tilley, D.R. (2019) Introduction to Surface and Superlattice Excitations. Taylor Francis Group, Bristol and Philadelphia. https://doi.org/10.1201/9780429187049
[24]
Boyd, R. (2019) Nonlinear Optics. 4th Edition, Elsevier, Amsterdam.
[25]
Strizhevskii, V.L. (1972) Theory of Stimulated Raman Scattering by Polaritons in Cubic and Uniaxial Crystals. Journal of Experimental and Theoretical Physics (JETP), 35, 760-766.
[26]
Akhmanov, S.A. and Khokhlov, R.V. (1964) Problems of Nonlinear Optics.
[27]
Cheng, Y.C., Jin, C.Q., Gao, F., Wu, X.L., Zhong, W., Li, S.H. and Chu, P.K. (2009) Raman Scattering Study of Zinc-Blende and Wurtzite ZnS. Journal of Applied Physics, 106, Article ID: 123505. https://doi.org/10.1063/1.3270401
[28]
Strizhevskii, V.L. (1962) Raman Scattering of Light in Crystals. Physics of the Solid State, 3, 2929.
[29]
Fonoberov, V.A. and Balandin, A.A. (2004) Interface and Confined Polar Optical Phonons in Spherical ZnO Quantum Dots with a Wurtzite Crystal Structure. Physica Status Solidi (c), 1, 2650-2653. https://doi.org/10.1002/pssc.200405373
[30]
Alim, K.A., Fonoberov, V.A. and Balandin, A.A. (2005) Origin of the Optical Phonon Frequency Shifts in ZnO Quantum Dots. Applied Physics Letters, 86, Article ID: 053103. https://doi.org/10.1063/1.1861509
[31]
Serrano, J., Manjon, E.J., Romero, A.H., Ivanov, A. Cardona, M., Lauck, R., Bosak, A. and Krisch, M. (2010) Phonon Dispersion Relations of Zinc Oxide: Inelastic Neutron Scattering and ab Initio Calculations. Physical Review B, 81, Article ID: 174304. https://doi.org/10.1103/PhysRevB.81.174304
[32]
Bhunia, A.K., Jha, P.K., Rout, D. and Saha, S. (2016) Morphological Properties and Raman Spectroscopy of ZnO Nanorods. Journal of Physical Sciences, 21, 111-118.
[33]
Phan, T.L., Yu, S.C., Nghia, N.X. and Lam, V.D. (2010) Resonant Raman Scattering in ZnO Nanostructures Annealed at Different Temperatures. Journal of the Korean Physical Society, 57, 1569-1573. https://doi.org/10.3938/jkps.57.1569
[34]
Mallet, E., Reveret, F., Disseix, P., Shubina, T.V. and Leymarie, J. (2014) Influence of Excitonic Oscillator Strengths on the Optical Properties of GaN and ZnO. Physical Review B, 90, Article ID: 045204. https://doi.org/10.1103/PhysRevB.90.045204
[35]
Milekhin, A.G., Yerykov, N.A., Sveshnikova, L.L., Duda, T.A., Zenkevitch, E.I., Kosolobov, S.S., Latyshev, A.V., Himenski, C., Surovtsev, N.V., Adichchev, S.V., Feng, Z.C., Wu, C.C., Wuu, D.S. and Zahn, D.R.T. (2011) Surface-Enhanced Raman Scattering of Light by ZnO Nanostructures. Journal of Experimental and Theoretical Physics, 113, 983-991. https://doi.org/10.1134/S1063776111140184
[36]
Zeng, X., Yan, S., Cui, J., Liu, H., Dong, J., Xia, W., Zhou, M. and Chen, H. (2015) Size- and Morphology-Dependent Optical Properties of ZnS: Al One-Dimensional Structures. Journal of Nanoparticle Research, 17, 188. https://doi.org/10.1007/s11051-015-3000-y
[37]
Serrano, J., Cantarero, A., Cardona, M., Garro, N., Lauck, R., Tallman, R.F., Ritter, T.M. and Weinstein, B.A. (2004) Raman Scattering in β-ZnS. Physical Review B, 69, Article ID: 014301. https://doi.org/10.1103/PhysRevB.69.014301
[38]
Vagelatos, N., Wehe, D. and King, J.S. (1974) Phonon Dispersion and Phonon Densities of States for ZnS and ZnTe. The Journal of Chemical Physics, 60, 3613-3618. https://doi.org/10.1063/1.1681581
[39]
Sun, L., Shi, L.C. and Wang, C.R. (2016) Investigations of Phonons in Zinc-Blende and Wurtzite by Raman Spectroscopy. IntechOpen, London, 23-40. https://doi.org/10.5772/64194