|
一种甲醛荧光探针分子电子转移机制的计算研究
|
Abstract:
一种具有高选择性、高灵敏度的苯并咪唑基吡啶类甲醛荧光探针分子L1,用较高精度的量子化学计算方法,密度泛函理论结合适中的基组,计算了该分子的优化构型,红外光谱以及前线分子轨道。通过与实验数据对比,计算所得分子构型合理有效。通过前线分子轨道能量分析,阐明了L1荧光探针遇到甲醛分子荧光猝灭的电子转移机制。该工作是量子化学计算方法在分子荧光探针领域进行光物理性质分析的初步探索,可以为甲醛分子荧光探针的合成设计领域提供有价值的理论参考。
Benzimidazolyl pyridine based fluorescent probe molecule L1 is high-selectivity and high-sensitivity for formaldehyde. The optimal structure, infrared spectroscopy and frontier molec-ular orbitals of the molecule are calculated by using a high-precision quantum chemical calculation method with density functional theory and suitable basis sets. By comparing with experimental data, the calculated molecular configuration is reasonable and effective. Through the frontier mo-lecular orbital energy analysis, the electron transfer mechanism of the fluorescence quenching of the L1 fluorescent probe with the formaldehyde molecule is clarified. This work is a preliminary ex-ploration of quantum chemical calculation methods in the field of molecular fluorescent probes for photophysical properties analysis, and can provide valuable theoretical references for this field.
[1] | Zhang, Y.M., Lin, Y.T., Chen, J.L., Zhang, J., Zhu, Z.Q. and Liu, Q.J. (2014) A High Sensitivity Gas Sensor for Formaldehyde Based on Silver Doped Lanthanum Ferrite. Sensors and Actuators B: Chemical, 190, 171-176.
https://doi.org/10.1016/j.snb.2013.08.046 |
[2] | Sayed, S.E., Pascual, L., Licchelli, M., Martínez-Má?ez, R., Gil, S., Costero, A.M., et al. (2016) Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8, 14318-14322. https://doi.org/10.1021/acsami.6b03224 |
[3] | Wahed, P., Razzaq, M.A., Dharmapuri, S. and Corrales, M. (2016) Determination of Formaldehyde in Food and Feed by an In-House Validated HPLC Method. Food Chemistry, 202, 476-483.
https://doi.org/10.1016/j.foodchem.2016.01.136 |
[4] | Salthammer, T., Mentese, S. and Marutzky, R. (2010) Formaldehyde in the Indoor Environment. Chemical Reviews, 110, 2536-2572. https://doi.org/10.1021/cr800399g |
[5] | Zhang, Q., Shao, M., Li, Y., Lu, S.H., Yuan, B. and Chen, W.T. (2012) Increase of Ambient Formaldehyde in Beijing and Its Implication for VOC Reactivity. Chinese Chemical Letters, 23, 1059-1062.
https://doi.org/10.1016/j.cclet.2012.06.015 |
[6] | Lu, K., Craft, S., Nakamura, J., Moeller, B.C. and Swenberg, J.A. (2012) Use of LC-MS/MS and Stable Isotopes to Differentiate Hydroxymethyl and Methyl DNA Adducts from Formaldehyde and Nitrosodimethylamine. Chemical Research in Toxicology, 25, 664-675. https://doi.org/10.1021/tx200426b |
[7] | Tong, Z., Han, C., Luo, W., Li, H., Luo, H., Qiang, M., et al. (2013) Aging-Associated Excess Formaldehyde Leads to Spatial Memory Deficits. Scientific Reports, 3, Article No. 1807. https://doi.org/10.1038/srep01807 |
[8] | Allouch, A., Guglielmino, M., Bernhardt, P., Serra, C.A. and Le Calvé, S. (2013) Transportable, Fast and High Sensitive Near Real-Time Analyzers: Formaldehyde Detection. Actuators B, 181, 551-558.
https://doi.org/10.1016/j.snb.2013.02.043 |
[9] | Ogunwale, M.A., Li, M., Raju, M.V.R., Chen, Y., Nantz, M.H., Conklin, D.J., et al. (2017) Aldehyde Detection in Electronic Cigarette Aerosols. ACS Omega, 2, 1207-1214. https://doi.org/10.1021/acsomega.6b00489 |
[10] | Wang, Z.J., Yang, J.B., Li, G.P., Sun, N.-N., Sun, W.-C., Peng, Q.-S., et al. (2016) Chemical Modifications of Peptides and Proteins with Low Concentration Formaldehyde Studied by Mass Spectrometry. Chinese Journal of Analytical Chemistry, 44, 1193-1199. https://doi.org/10.1016/S1872-2040(16)60949-0 |
[11] | Chen, L., Jin, H., Xu, H., Sun, L., Yu, A., Zhang, H., et al. (2009) Microwave-Assisted Extraction Coupled Online with Derivatization, Restricted Access Material Cleanup, and High-Performance Liquid Chromatography for Determination of Formaldehyde in Aquatic Products. Journal of Agricultural and Food Chemistry, 57, 3989-3994.
https://doi.org/10.1021/jf900136x |
[12] | Chang, C.J., Gunnlaugsson, T. and James, D. (2015) Imaging Agents. Chemical Society Reviews, 44, 4484-4486.
https://doi.org/10.1039/C5CS90065D |
[13] | Cao, M., Chen, H., Chen, D., Xu, Z., Liu, S.H., Chen, X., et al. (2016) Naphthalimide-Based Fluorescent Probe for Selectively and Specifically Detecting Glutathione in Lysosome of Living Cells. Chemical Communications, 52, 721-724.
https://doi.org/10.1039/C5CC08328A |
[14] | Wu, S., Wei, Y.J., Wang, Y.B., Su, Q., Wu, L., Zhang, H., et al. (2014) Ratiometric and Selective Two-Photon Fluorescent Probe Based on PET-ICT for Imaging Zn2+ in Living Cells and Tissues. Chinese Chemical Letters, 25, 93-98.
https://doi.org/10.1016/j.cclet.2013.10.005 |
[15] | Zhang, Y., Chen, H., Chen, D., Wu, D., Chen, Z., Zhang, J., et al. (2016) A Colorimetric and Ratiometric Fluorescent Probe for Mercury (II) in Lysosome. Sensors and Actuators B: Chemical, 224, 907-914.
https://doi.org/10.1016/j.snb.2015.11.018 |
[16] | Yin, J., Kwon, Y., Kim, D., Lee, D., Kim, G., Hu, Y., et al. (2014) Cyanine-Based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues. Journal of the American Chemical Society, 136, 5351-5358. https://doi.org/10.1021/ja412628z |
[17] | Lee, J.Y., Cho, E.J., Mukamel, S. and Nam, K.C. (2004) Efficient Fluoride-Selective Fluorescent Host:? Experiment and Theory. Journal of Organic Chemistry, 69, 943-950. https://doi.org/10.1021/jo0356457 |
[18] | 孙伟, 胡德禹, 吴志兵, 宋宝安, 杨松. 基于罗丹明的重金属和过渡金属阳离子荧光分子探针研究进展[J]. 有机化学, 2011, 31(7): 997-1010. |
[19] | Xu, Z.Q., Chen, J.H., Hu, L.L., Tan, Y., Liu, S.-H. and Yin, J. (2017) Recent Advances in Formaldehyde-Responsive Fluorescent Probes. Chinese Chemical Letters, 28, 1935-1942. https://doi.org/10.1016/j.cclet.2017.07.018 |
[20] | Ding, H.L., Chen, L.D., Wang, N., Li, K., An, Y. and Lü, C.-W. (2019) Two Highly Selective And Sensitive Fluorescent Imidazole Derivatives Design And Application for 2,4,6-Trinitrophenol Detection. Talanta, 195, 345-353.
https://doi.org/10.1016/j.talanta.2018.11.068 |
[21] | Lu, H.G. and Li, L.M. (1999) Density Functional Study on Zerovalent Lanthanide Bis(Arene)-Sandwich Complexes. Theoretical Chemistry Accounts, 102, 121-126. https://doi.org/10.1007/s002140050481 |