|
金纳米棒的等离子体调控及增强共振拉曼散射研究
|
Abstract:
棒状金纳米的表面等离子体共振与纳米材料的形状、尺寸及介质的折射率紧密相关。通过对金纳米棒的光学性能调控可实现其在众多领域如药物释放、光热治疗、化学催化等方面的应用。本论文采用优化的油酸钠-CTAB种子生长法制备了尺寸均一、稳定性好的金纳米棒,通过对生长过程中油酸钠、硝酸银和金种子用量的调控合成了不同长径比的金纳米棒,探讨了不同因素对金纳米棒生长的影响。在此基础上,利用表面增强拉曼光谱对该材料的表面增强共振拉曼散射(SERRS)效应进行了研究,并实现了对染料分子罗丹明B的高灵敏检测。
Surface plasma resonance of Au nano-rods is closely related to the shape and size of materials and the refractive index. The applications in many fields such as drug release, photothermal therapy, and chemical catalysis can be realized by adjusting the optical properties of Au nano-rods. In this thesis, the seed growth method with sodium oleate and CTAB was used to prepare Au nano-rods with uniform size and good stability. The Au nano-rods with different aspect ratios were synthesized by regulating the amount of sodium oleate, silver nitrate and gold seeds during the growth process. We discussed the influence of different factors on the morphology of Au nano-rods. On this basis, surface-enhanced resonance Raman scattering (SERRS) effect of the materials was investigated, and highly sensitive detection of Rhodamine B has been successfully achieved.
[1] | 翟宏菊, 戴晓威, 曹爽, 丁田田, 付祥雪. 金纳米粒子的合成、性质及其应用新进展[J]. 吉林师范大学学报(自然科学版), 2017, 38(2): 13-16. |
[2] | Sekhon, J.S. and Verma, S.S. (2011) Refractive Index Sensitivity Analysis of Ag, Au, and Cu Nanoparticles. Plasmonics, 6, 311-317. https://doi.org/10.1007/s11468-011-9206-7 |
[3] | Yu, C.S. and Lee, C.L. (1997) Gold Nanorods: Electrochemical Synthesis and Optical Properties. Journal of Physical Chemistry B, 101, 6661-6664. https://doi.org/10.1021/jp971656q |
[4] | Jones, M.R., Osberg, K.D. and Macfarlane, R.J. (2011) Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews, 111, 3736-3827. https://doi.org/10.1021/cr1004452 |
[5] | Niidome, Y., Nishioka, K. and Kawasaki. H. (2003) Rapid Synthesis of Gold Nanorods by the Combination of Chemical Reduction and Photo irradiation Processes: Morphological Changes Depending on the Growing Processes. Chemical Communications, 18, 2376-2377. https://doi.org/10.1039/B307836A |
[6] | Jana, N.R., Gearheart, L. and Murphy, C.J. (2001) Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio. Chemical Communications, 7, 617-618. https://doi.org/10.1039/b100521i |
[7] | Zhang, L., Xia, K. and Lu, Z. (2014) Efficient and Facile Synthesis of Gold Nanorods with Finely Tunable Plasmonic Peaks from Visible to Near-IR Range. Chemistry of Materials, 26, 1794-1798. https://doi.org/10.1021/cm403109k |
[8] | Wiesner, J. and Wokaun, A. (1989) Anisometric Gold Colloids. Preparation, Characterization, and Optical Properties. Chemical Physics Letters, 157, 569-575. https://doi.org/10.1016/S0009-2614(89)87413-5 |
[9] | Martin, C. R. (1996) Membrane-Based Synthesis of Nanomaterials. Chemistry of Materials, 8, 1739-1746.
https://doi.org/10.1021/cm960166s |
[10] | Kim, F., Song, J.H. and Yang P.D. (2002) Photochemical Synthesis of Gold Nanorods. Journal of the American Chemical Society, 124, 14316-14317. https://doi.org/10.1021/ja028110o |
[11] | Nikoobakht, B. and El-Sayed, M.A. (2003) Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials, 15, 1957-1962. https://doi.org/10.1021/cm020732l |
[12] | Chang, J.Y., Wu, H. and Chen, H. (2005) Oriented Assembly of Au Nanorods Using Biorecognition System. Chemical Communications, 8, 1092-1094. https://doi.org/10.1039/b414059a |
[13] | Garg, N., Scholl, C., Mohanty, A. and Jin, R. (2010) The Role of Bromide Ions in Seeding Growth of Au Nanorods. Langmuir, 26, 10271-10276. https://doi.org/10.1021/la100446q |
[14] | Campion, A. and Kambhampati, P. (1998) Surface-Enhanced Raman Scattering. Chemical Society Reviews, 27, 241-250. https://doi.org/10.1039/a827241z |
[15] | 马超, 韩晓霞, 阮伟东, 宋薇, 王旭, 赵冰. g-C3N4/Ag纳米复合材料表面增强拉曼基底对婴幼儿糖果中的罗丹明B的痕量检测[J]. 化学学报, 2019, 77(10): 1024-1030. |