全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于席夫碱配体的稀土–过渡异金属配合物的研究进展
Research Progress of Lanthanide-Transition Heterometallic Complexes Containing Schiff-Based Ligands

DOI: 10.12677/JAPC.2021.103012, PP. 122-133

Keywords: 稀土–过渡,配合物,结构,性质
Lanthanide-Transition
, Complex, Structure, Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

席夫碱取代基团的各向异性,C=N基团自身的优良特性,使得席夫碱配体在光电材料、磁性材料、催化活性、分析化学等领域有着非常广阔的应用前景。许多稀土离子不仅有大的基态自旋值,还有大的磁各向异性的特点,这使得稀土离子成为理想的分子磁体的制备顺源,科学家们因此一直在期待着使用稀土离子来构建分子磁铁。然而,由于稀土离子的半径较大,它们之间的相互作用通常较弱,很难获得性能良好的分子磁体。引入3d过渡金属不仅可以改善复合物的整体自旋基态,还可以改变稀土的磁交换路径。因此,过渡金属离子与稀土金属离子耦合形成的基于席夫碱配体的3d-4f金属配合物通常具有良好的磁性能。本文中首先介绍了席夫碱配体的分类,金属配合物的发展历程,稀土–过渡配合物的合成方法,并且根据不同的过渡金属离子,将稀土–过渡配合物分为六种类型,重点综述了其结构及性质,探讨稀土–过渡配合物在当前的应用及在未来的发展前景。
Schiff-based ligands have a very broad application prospect in the fields of photoelectric materials, magnetic materials, catalytic activity, analytical chemistry, etc. due to the anisotropy of substituted groups and the excellent properties of C=N groups. Many lanthanide ions not only have large ground state spin values, but also have large chain anisotropy characteristics, which make lanthanide ions an ideal source for the preparation of molecular magnets. Scientists have therefore been looking forward to using lanthanide ions to build molecular magnets. However, due to the large radius of lanthanide separation, the lease interaction between lanthanide ions is usually weak, and it is diffi-cult to obtain molecular magnets of good properties. Introducing 3d transition metals can not only improve the overall self-bonding ground state of the composite, but also change the magnetic ex-change path of lanthanide. Therefore, the Schiff-based ligand 3d-4f metal complexes formed by the coupling of the transition metal ions and the lanthanide metal ions usually have good magnetic properties. This article first introduces the classification of the Schiff-based ligands, the develop-ment of metal complexes, lanthanide-transition synthesis methods, and then according to the dif-ferent transition metal ions, lanthanide-transition complexes can be divided into six types, focusing on its structure and properties and discussing the application of lanthanide-transition complexes in the current and the prospects of development in the future.

References

[1]  Liu, Y., Chen, Y.C., Liu, J., Chen, W.B., Huang, G.Z., Wu, S.G., Wang, J., Liu, J.L. and Tong, M.L. (2019) Cyanometallate-Bridged Didysprosium Single-Molecule Magnets Constructed with Single-Ion Magnet Building Block. Inorganic Chemistry, 59, 687-694.
https://doi.org/10.1021/acs.inorgchem.9b02948
[2]  Huang, G.Z., Ruan, Z.Y., Zheng, J.Y., Wu, J.Y., Chen, Y.C., Li, Q.W., Akhtar, M.N., Liu, J.L. and Tong, M.L. (2018) Enhancing Single-Molecule Magnet Behavior of Linear CoII-DyIIICoII Complex by Introducing Bulky Diamagnetic Moiety. Science China Chemistry, 61, 1399-1404.
https://doi.org/10.1007/s11426-018-9310-y
[3]  Mondal, K.C., Sundt, A., Lan, Y., Kostakis, G.E., Waldmann, O., Ungur, L., Chibotaru, L.F., Anson, C.E. and Powell, A.K. (2012) Coexistence of Distinct Single-Ion and Exchange-Based Mechanisms for Blocking of Magnetization in a CoII2DyIII2 Single-Molecule Magnet. Angewandte Chemie International Edition, 51, 7550-7554.
https://doi.org/10.1002/anie.201201478
[4]  Chorazy, S., Wang, J. and Ohkoshi, S. (2016) Yellow to Greenish-Blue Colour-Tunable Photoluminescence and 4f-Centered Slow Magnetic Relaxation in a Cyanido-Bridged Dy(III)(4-hydroxypyridine)-Co(III) Layered Material. Chemical Communications, 52, 10795-10798.
https://doi.org/10.1039/C6CC05337H
[5]  Peng, Y., Singh, M.K., Mereacre, V., Anson, C.E., Rajaraman, G. and Powell, A.K. (2019) Mechanism of Magnetisation Relaxation in {MIII2DyIII2} (M = Cr, Mn, Fe, Al) “Butterfly” Complexes: How Important Are the Transition Metal Ions Here? Chemical Science, 10, 5528-5538.
https://doi.org/10.1039/C8SC05362F
[6]  Mereacre, V.M., Ako, A.M., Clerac, R., Wernsdorfer, W., Filoti, G., Bartolome, J., Anson, C.E. and Powell, A.K. (2007) A Bell-Shaped Mn11Gd2 Single-Molecule Magnet. Journal of the American Chemical Society, 129, 9248-9249.
https://doi.org/10.1021/ja071073m
[7]  Keypour, H., Mahmoudabadi, M., Shooshtari, A., Bayat, M., Soltani, E., Karamian, R. and Farida, S.H.M. (2020) Synthesis, Spectral, Theoretical and Antioxidant Studies of Copper(II) and Cobalt(III) Macroacyclic Schiff-Base Complexes Containing Homopiperazine Moietiy. Chemical Data Collections, 26, Article ID: 100354.
https://doi.org/10.1016/j.cdc.2020.100354
[8]  Andiappan, K., Sanmugam, A., Deivanayagam, E., Karuppasamy, K., Kim, H.S. and Vikraman, D. (2019) Schiff Base Rare Earth Metal Complexes: Studies on Functional, Optical and Thermal Properties and Assessment of Antibacterial Activity. International Journal of Biological Macromolecules, 124, 403-410.
https://doi.org/10.1016/j.ijbiomac.2018.11.251
[9]  Liu, C.M., Zhang, D.Q., Hao, X. and Zhu, D.B. (2014) Trinuclear [CoIII2-LnIII] (Ln=Tb, Dy) Single-Ion Magnets with Mixed 6-Chloro-2-Hydroxypyridine and Schiff Base Ligands. Chemistry—An Asian Journal, 9, 1847-1853.
https://doi.org/10.1002/asia.201402001
[10]  任玮. Co-Ln、Ni-Ln异金属配合物的合成、结构和性质研究[D]: [博士学位论文]. 临汾: 山西师范大学, 2014.
[11]  田威. 稀土及过渡金属含硫席夫碱配合物的合成及其性能研究[D]: [博士学位论文]. 南昌: 南昌大学, 2019.
[12]  Liu, J.L., Wu, J.Y., Chen, Y.C., Mereacre, V., Powell, A.K., Ungur, L., Chibotaru, L.F., Chen, X.M. and Tong, M.L. (2014) A Heterometallic Fe(II)-Dy(III) Single-Molecule Magnet with a Record Anisotropy Barrier. Angewandte Chemie International Edition, 53, 12966-12970.
https://doi.org/10.1002/anie.201407799
[13]  Feng, W., Sun, L.D., Zhang, Y.W. and Yan, C.H. (2010) Synthesis and Assembly of Rare Earth Nanostructures Directed by the Principle of Coordination Chemistry in Solution-Based Process. Coordination Chemistry Reviews, 254, 1038-1053.
https://doi.org/10.1016/j.ccr.2010.02.007
[14]  王金. 3d-4f金属冠醚型单分子磁体的设计与磁性调控[D]: [博士学位论文]. 广州: 中山大学, 2019.
[15]  Suna, H.L., Wanga, Z.M. and Gao, S. (2010) Strategies towards Single-Chain Magnets. Coord. Chemical Reviews, 254, 1081-1100.
https://doi.org/10.1016/j.ccr.2010.02.010
[16]  Kajiwara, T., Takahashi, K., Hiraizumi, T., et al. (2009) Coordination Enhancement of Single-Molecule Magnet Behavior of Tb(III)-Cu(II) Dinuclear Systems. Polyhedron, 28, 1860-1863.
https://doi.org/10.1016/j.poly.2009.02.010
[17]  Liu, K., Shi, W. and Cheng, P. (2015) Toward Heterometallic Single-Molecule Magnets: Synthetic Strategy, Structures and Properties of 3d-4f Discrete Complexes. Coordination Chemistry Reviews, 289-290, 74-122.
https://doi.org/10.1016/j.ccr.2014.10.004
[18]  Chen, Y.M., She, S.X., Zheng, L.N., Hu, B., Chen, W.Q., Xu, B., Chen, Z., Zhou, F.Y. and Li, Y.H. (2011) Heteronuclear M(II)-Ln(III) (M = Co, Mn; Ln = La, Pr, Sm, Gd, Dy and Er) Coordination Polymers: Synthesis, Structures and Magnetic Properties. Polyhedron, 30, 3010-3016.
https://doi.org/10.1016/j.poly.2011.02.017
[19]  王金, 赵小庆. 稀土-过渡异金属配位聚合物的研究进展[J]. 结构化学, 2014, 33(1): 7-18.
[20]  Prasad, T.K., Rajasekharan, M.V. and Costes, J.P. (2007) A Cubic 3d-4f Structure with Only Ferromagnetic Gd-Mn Interactions. Angewandte Chemie International Edition, 46, 2851-2854.
https://doi.org/10.1002/anie.200605062
[21]  Wang, Q.Q., Ye, J.W., Tian, G., Chen, Y., Lu, X.Y., Gong, W.T. and Ning, G.L. (2011) Three-Dimensional Ln(III)-Mn(II) Metal Organic Frameworks Constructed from Rod-Shaped Molecular Building Blocks: Syntheses, Structures and Magnetic Properties. Inorganic Chemistry Communications, 14, 889-892.
https://doi.org/10.1016/j.inoche.2011.03.020
[22]  Gatteschi, D. and Sessoli, R. (2003) Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angewandte Chemie International Edition, 42, 268-297.
https://doi.org/10.1002/anie.200390099
[23]  Osa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. and Mrozinski, J. (2004) A Tetranuclear 3d-4f Single Molecule Magnet: [CuIILTbIII(hfac)2]2. Journal of the American Chemical Society, 126, 420-421.
https://doi.org/10.1021/ja037365e
[24]  Wang, Z., Bai, F.Y., Xing, Y.H., Shi, Z., Xie, Y., Zhao, H.Y. and Hou, K.L. (2010) Synthesis of Three-Dimensional Sm-Cu Coordination Polymers Constructed by 2,5-Pyridinedicarboxylic Acid and Carbonate Radicals and Study on Crystal Structure. Chinese Journal of Inorganic Chemistry, 26, 713-716.
[25]  Schachner, J.A., Lund, C.L., Burgess, I.J., Quail, J.W., Schatte, G. and Müller, J. (2008) The Dynamic Indium-Bridged [1.1]Ferrocenophane[(Me2Ntsi)In(C5H4)2Fe]2. Organometallics, 27, 4703-4710.
https://doi.org/10.1021/om800342e
[26]  Akitsu, T. and Einaga, Y. (2006) Structures and XPS Studies of Several 3d-4f Cyano-Bridged LnIII-FeIII/CoIII Heterometallic Complexes. Polyhedron, 25, 2655-2662.
https://doi.org/10.1016/j.poly.2006.03.026
[27]  Yamaguchi, T., Costes, J.P., Kishima, Y., et al. (2010) Face-Sharing Heterotrinuclear MII-LnIII-MII(M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) Complexes: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 49, 9125-9135.
https://doi.org/10.1021/ic100460w
[28]  Mukherjee, S., Lan, Y.H., Novitchi, G., Kostakis, G.E., Anson, C.E. and Powell, A.K. (2009) Syntheses, Structures and Magnetic Studies of Three Heterometallic Fe2Ln 1D Coordination Polymers. Polyhedron, 28, 1782-1787.
https://doi.org/10.1016/j.poly.2008.12.003
[29]  Gao, H.L., Yi, L., Ding, B., Wang, H.S., Cheng, P., Liao D.Z. and Yan, S.P. (2006) First 3D Pr(III)-Ni(II)-Na(I) Polymer and a 3D Pr(III) Open Network Based on Pyridine-2,4,6-Tricarboxylic Acid. Inorganic Chemistry, 45, 481-483.
https://doi.org/10.1021/ic051707v
[30]  漆婷婷. 3d-4f异金属双核配合物的合成、结构及性质研究[D]: [博士学位论文]. 赣州: 江西理工大学, 2015.
[31]  Yamaguchi, T., Costes, J.P., Kishima, Y., et al. (2010) Face-Sharing Heterotrinuclear MII-LnIII-MII(M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) Complexes: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 49, 9125-9135.
https://doi.org/10.1021/ic100460w
[32]  Xu, H.B., Wen, H.M., Chen, Z.H., et al. (2010) Square Structures and Photophysical Properties of Zn2Ln2 Complexes (Ln = Nd, Eu, Sm, Er, Yb). Dalton Transactions, 39, 1948.
https://doi.org/10.1039/B919170D
[33]  朱挺. 基于柔性席夫碱配体的过渡金属-稀土多核金属配合物的合成及发光性能研究[D]: [博士学位论文]. 温州: 温州大学, 2018.
[34]  Griffiths, K., Mayans, J., Shipman M.A., Tizzard, G.J., Coles, S.J., Blight, B.A., Escuer, A. and Kostakis, G.E. (2017) Four New Families of Polynuclear Zn-Ln Coordination Clusters. Synthetic, Topological, Magnetic, and Luminescent Aspects. Crystal Growth & Design, 17, 1524-1538.
https://doi.org/10.1021/acs.cgd.6b01401
[35]  Kaemmerer, H., Baniodeh, A., Peng, Y., Moreno-Pineda, E., Schulze, M., Anson, C.E., Wernsdorfer, W., Schnack, J. and Powell, A.K. (2020) Inorganic Approach to Stabilizing Nanoscale Toroidicity in a Tetraicosanuclear Fe18Dy6 Single Molecule Magnet. Journal of the American Chemical Society, 142, 14838-14842.
https://doi.org/10.1021/jacs.0c07168
[36]  吴伯岳, 严秀平. 稀土发光材料在荧光成像中的应用[J]. 生物物理学报, 2011, 27(4): 289-300.
[37]  朱文婷. 系列镧系配位聚合物的合成、结构及发光性能[D]: [博士学位论文]. 大连: 辽宁师范大学, 2009.
[38]  Trombe, J.C., Gleizes, A. and Galy, J. (1984) Structural Evolution within a Series of Hydrated Bis-(di-thiooxalato) Nickelate(II) of Rare Earths (RE)2(H2O)2nNi3(S2C2O2)6?xH2O. Inorganica Chemica Acta, 87, 129-141.
https://doi.org/10.1016/S0020-1693(00)81826-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133