全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贪心剪枝:无需搜索的自动剪枝算法
GreedyPruner: Automatic Pruning Algorithm without Searching

DOI: 10.12677/SEA.2021.104064, PP. 595-605

Keywords: 神经网络模型修剪,自动剪枝,超网络,贪心训练
Neural Network Model Pruning
, Automatic Pruning, SuperNet, Greedy Training

Full-Text   Cite this paper   Add to My Lib

Abstract:

运行功能强大的神经网络需要消耗大量的存储空间和计算资源,这对资源有限的移动设备和嵌入式设备是无法接受的。针对这个问题,本文基于贪心策略提出了一个高效的GreedyPruner算法用来自动修剪网络模型。该算法首先预训练一个超网络,这个超网络可以预测任意给定网络结构的性能;其次,引入精度队列和压缩池分别保存性能较好和剪枝率较高的网络结构,提出贪心训练策略对超网络进行二次训练,将训练空间从全体解空间贪婪地转移到精度队列和压缩池中;最后,取精度队列和压缩池中的最优网络结构进行权值微调,得到修剪后的网络模型。实验结果表明,GreedyPruner可以在网络性能几乎不变的情况下,大幅压缩模型的参数和运算量,压缩后的网络模型更有利于部署在移动设备和嵌入式设备中。
A powerful neural network needs to consume a lot of storage space and computing resources, which is unacceptable for mobile devices and embedded devices with limited resources. In response to this problem, this paper proposes an efficient GreedyPruner algorithm based on the greedy strate-gy to automatically prune the network model. The algorithm first pretrains a SuperNet, which can predict the performance of any given network structure; secondly, the precision queue and the compression pool are introduced to preserve the network structure with better performance and higher pruning rate respectively, and the greedy training strategy is proposed to train the SuperNet work twice, and the training space is greedily transferred from the whole solution space to the precision queue and the compression pool; finally, take the optimal network structure in the precision queue and the compression pool to fine-tune the weights to obtain the pruned network model. Experimental results show that GreedyPruner can greatly compress the parameters and calculations of the model while the network performance is almost unchanged. The compressed network model is more conducive to deployment on mobile devices and embedded devices.

References

[1]  Han, S., Pool, J., Tran, J., et al. (2015) Learning both Weights and Connections for Efficient Neural Networks.
[2]  Han, S., Mao, H. and Dally, W.J. (2015) Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
[3]  Li, H., Kadav, A., Durdanovic, I., et al. (2016) Pruning Filters for Efficient ConvNet.
[4]  Liu, Z., Li, J., Shen, Z., et al. (2017) Learning Efficient Convolutional Networks through Network Slim-ming. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 2736-2744.
https://doi.org/10.1109/ICCV.2017.298
[5]  Luo, J.H., Wu, J. and Lin, W. (2017) Thinet: A Filter Level Pruning Method for Deep Neural Network Compression. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 5058-5066.
https://doi.org/10.1109/ICCV.2017.541
[6]  He, Y., Zhang, X. and Sun, J. (2017) Channel Pruning for Accelerat-ing Very Deep Neural Networks. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 1389-1397.
https://doi.org/10.1109/ICCV.2017.155
[7]  He, Y., Lin, J., Liu, Z., et al. (2018) AMC: Automl for Model Com-pression and Acceleration on Mobile Devices. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 8-14 September 2018, 784-800.
https://doi.org/10.1007/978-3-030-01234-2_48
[8]  Liu, N., Ma, X., Xu, Z., et al. (2020) AutoCompress: An Au-tomatic DNN Structured Pruning Framework for Ultra-High Compression Rates. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 4876-4883.
https://doi.org/10.1609/aaai.v34i04.5924
[9]  Boyd, S., Parikh, N., Chu, E., et al. (2011) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Foundations and Trends.
https://doi.org/10.1561/9781601984616
[10]  Zhang, T., Zhang, K., Ye, S., et al. (2018) ADAM-ADMM: A Uni-fied, Systematic Framework of Structured Weight Pruning for DNNS.
[11]  Lin, S., Ji, R., Yan, C., et al. (2019) To-wards Optimal Structured CNN Pruning via Generative Adversarial Learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 2790-2799.
https://doi.org/10.1109/CVPR.2019.00290
[12]  Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al. (2014) Gen-erative Adversarial Networks.
[13]  Liu, Z., Mu, H., Zhang, X., et al. (2019) Metapruning: Meta Learning for Automatic Neural Network Channel Pruning. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, 27-28 October 2019, 3296-3305.
https://doi.org/10.1109/ICCV.2019.00339
[14]  You, S., Huang, T., Yang, M., et al. (2020) Greedynas: Towards Fast One-Shot NAS with Greedy Supernet. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 13-19 June 2020, 1999-2008.
https://doi.org/10.1109/CVPR42600.2020.00207
[15]  Lin, M., Ji, R., Zhang, Y., et al. (2020) Channel Pruning via Automatic Structure Search.
https://doi.org/10.24963/ijcai.2020/94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133