全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀土基发光材料的研究进展
Research Progress of Lanthanide-Based Luminescent Materials

DOI: 10.12677/JAPC.2021.103011, PP. 104-121

Keywords: 稀土,荧光材料,结构,应用
Lanthanide
, Fluorescent Material, Structure, Application

Full-Text   Cite this paper   Add to My Lib

Abstract:

稀土基荧光材料是由稀土离子和配体组成。单个稀土原子或多个稀土原子掺杂而成的稀土荧光基材料,在荧光色彩方面有让人瞩目的差异,单个配体或多个配体的稀土基荧光材料在结构、荧光性能等方面也有着不小的差别。这使得不少学者在该领域进行探索。本文首先介绍了稀土基荧光材料的发光机理,合成方法与影响因素。在有了初步了解之后,将稀土基荧光材料分为电荷转移发光、配体发光和稀土离子发光三大类,对其性能和机理进行综述。最后列举稀土基发光材料目前热门的应用,为稀土基荧光材料的研究做一定的参考。
Lanthanide-based fluorescent materials are composed of lanthanide ions and ligands. There are remarkable differences in the fluorescent colors of lanthanide fluorescent materials doped by a sin-gle or multiple lanthanide atoms. There are also significant differences in the structures and fluo-rescent performances doped by a single or multiple ligands. Therefore, this has driven many schol-ars to explore the field. In this paper, the luminescent mechanism, synthesis method and influenc-ing factors of lanthanide-based fluorescent materials are introduced. After preliminary under-standing, lanthanide-based fluorescent materials are divided into three categories: charge transfer luminescence, ligand luminescence and lanthanide ion luminescence, and their properties and mechanisms are reviewed. Finally, the popular applications of lanthanide-based luminescent mate-rials are listed, which can lay the foundation of the research for lanthanide-based luminescent ma-terials.

References

[1]  Park, H., Lee, Y.K., Im, W.B., et al. (2015) Phosphor in Glass with Eu3+ and Pr3+-Doped Silicate Glasses for LED Color Conversion. Optical Materials, 41, 67-70.
https://doi.org/10.1016/j.optmat.2014.08.017
[2]  Lin, S., Wu, J., Wang, C., et al. (2015) Modulating Relaxation Dynamics of Dy2 Compounds through Carboxylate Coordination Modes. European Journal of Inorganic Chemistry, 33, 5488-5494.
https://doi.org/10.1002/ejic.201500956
[3]  Wang, W.M., Zhang, H.X., Wang, S.Y., et al.(2015) Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(III) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand. Inorganic Chemistry, 54, 10610-10622.
https://doi.org/10.1021/acs.inorgchem.5b01404
[4]  Zeng, D., Ren, M., Bao, S., et al. (2015) pH-Controlled Polymorphism in a Layered Dysprosium Phosphonate and Its Impact on the Magnetization Relaxation. Chemical Communications, 51, 2649-2652.
https://doi.org/10.1039/C4CC09341K
[5]  Chen, Z., Fang, M., Kang, X., et al. (2016) Assembly of Single Molecular Magnets from Dinuclear to 2D Dy-Compounds with Significant Change of Relaxation Energy Barriers. Dalton Transactions, 45, 85-88.
https://doi.org/10.1039/C5DT02444G
[6]  Peng, Y., Mereacre, V., Baniodeh, A., et al. (2016) Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers. Inorganic Chemistry, 55, 68-74.
https://doi.org/10.1021/acs.inorgchem.5b01793
[7]  Yutronkie, N.J., Kuhne, I.A., Korobkov, I., et al. (2016) Connecting Mononuclear Dysprosium Single-Molecule Magnets to Form Dinuclear Complexes via in Situ Ligand Oxidation. Chemical Communications, 52, 677-680.
https://doi.org/10.1039/C5CC07629C
[8]  Chen, W., Chen, Y., Liu, J., et al. (2017) A Piezochromic Dysprosium(III) Single-Molecule Magnet Based on an Aggregation-Induced-Emission-Active Tetraphenylethene Derivative Ligand. Inorganic Chemistry, 56, 8730-8734.
https://doi.org/10.1021/acs.inorgchem.7b01059
[9]  Demir, S., Gonzalez, M.I., Darago, L.E., et al. (2017) Giant Coercivity and High Magnetic Blocking Temperatures for N23-Radical-Bridged Dilanthanide Complexes upon Ligand Dissociation. Nature Communications, 8, 2144-2152.
https://doi.org/10.1038/s41467-017-01553-w
[10]  Kariaka, N.S., Kolotilov, S.V., Gawryszewska, P., et al. (2019) Structures and Spectral and Magnetic Properties of a Series of Carbacylamidophosphate Pentanuclear Lanthanide(III) Hydroxo Complexes. Inorganic Chemistry, 58, 14682-14692.
https://doi.org/10.1021/acs.inorgchem.9b02354
[11]  Mayans, J., Saez, Q., Fontbardia, M., et al. (2019) Enhancement of Magnetic Relaxation Properties with 3d Diamagnetic Cations in [ZnIILnIII] and [NiIILnIII], LnIII = Kramers Lanthanides. Dalton Transactions, 48, 641-652.
https://doi.org/10.1039/C8DT03679A
[12]  Xu, Y., Luo, F., Zheng, J., et al. (2019) Syntheses, Structures, and Magnetic Properties of a Series of Heterotri-, Tetra- and Pentanuclear LnIII-CoII Compounds. Polymers, 11, 196-212.
https://doi.org/10.3390/polym11020196
[13]  Seshadri, M., Bell, M.J., Anjos, V., et al. (2019) Spectroscopic Investigations on Yb3+ Doped and Pr3+/Yb3+ Codoped Tellurite Glasses for Photonic Applications. Journal of Rare Earths, 39, 33-42.
https://doi.org/10.1016/j.jre.2019.12.006
[14]  Yu, L., Zhang, X., Wei, D., et al. (2019) Highly Efficient Fluorescent Material Based on Rare-Earth-Modified Polyhydroxyalkanoates. Biomacromolecules, 20, 3233-3241.
https://doi.org/10.1021/acs.biomac.8b01722
[15]  Dousti, M.R., Poirier, G., De Camargo, A.S, et al. (2020) Tungsten Sodium Phosphate Glasses Doped with Trivalent Rare Earth Ions (Eu3+, Tb3+, Nd3+ and Er3+) for Visible and Near-Infrared Applications. Journal of Non-Crystalline Solids, 530, Article ID: 119838.
https://doi.org/10.1016/j.jnoncrysol.2019.119838
[16]  Zhang, J., Rahman, A.Z., Li, Y., et al. (2013) Synthesis and Luminescence Properties of Sm-Doped LDPE-Na2SO4 Composite Material. Optical Materials, 36, 471-475.
https://doi.org/10.1016/j.optmat.2013.10.011
[17]  Li, X., Zhou, X., Wang, X., et al. (2011) In-Situ Polymerization Approach for Preparation of Rare Earth Fluoride Phosphors Coated with PAA. Journal of Nanoscience and Nanotechnology, 11, 9973-9979.
https://doi.org/10.1166/jnn.2011.5297
[18]  王莉, 李洁, 王华, 等. Sr2CeO4:Dy3+荧光粉的合成以及发光特性的研究[J]. 光谱学与光谱分析, 2012, 32(9): 2492-2495.
[19]  Fu, L.S., Meng, Q.G., Zhang, H.J., et al. (2000) In Situ Synthesis of Terbium-Benzoic Acid Complex in Sol-Gel Derived Silica by a Two-Step Sol-Gel Method. Journal of Physics and Chemistry of Solids, 61, 1877-1881.
https://doi.org/10.1016/S0022-3697(00)00071-8
[20]  Mo, Z., Niu, G., Chen, H., et al. (2008) Synthesis and Characterization of Hyperbranched Poly(amine-ester)/Lanthanum/ Montmorillonite Nanocomposites. Materials Letters, 62, 1743-1746.
https://doi.org/10.1016/j.matlet.2007.09.075
[21]  邵黎明, 荆西平. 荧光材料GdOCl:Er3+, Yb3+的深红-近红外发光研究[J]. 无机化学学报, 2014, 30(10): 2295-2300.
[22]  冯晓琴, 张锋, 陈天保. LiyMg2?x?yP2O7:xTb3+磷酸盐基质荧光粉的制备及发光性能研究[J]. 化工新型材料, 2020, 48(3), 101-104.
[23]  赵军伟, 单含, 贾铁昆, 等. 氮气氛中高温退火对NaYF4:Yb3+, Er3+纳米粒子上转换发光的影响[J]. 发光学报, 2011, 32(12): 1227-1232.
[24]  Zhu, Y., Meng, Q., Sun, W., et al. (2020) NaLa(MoO4)2: Sm3+, Tb3+ Phosphor: Optical Temperature Sensing Material with a Wide Change Range of Luminescence Color. Journal of Luminescence, 218, Article ID: 116854.
https://doi.org/10.1016/j.jlumin.2019.116854
[25]  Wang, X., Chen, F., Chen, L., et al. (2007) Crystal Structure and Fluorescence Properties of a New Ternary Binuclear Complex: Sm2(C3H3O2)6(phen)2. Zeitschrift für Naturforschung B, 62, 1267-1270.
https://doi.org/10.1515/znb-2007-1006
[26]  Ueba, Y., Banks, E., Okamoto, Y., et al. (1980) Investigation on the Synthesis and Characterization of Rare Earth Metal-Containing Polymers. II. Fluorescence Properties of Eu3+-Polymer Complexes Containing β-Diketone Ligand. Journal of Applied Polymer Science, 25, 2007-2017.
https://doi.org/10.1002/app.1980.070250917
[27]  陈晓波, 李美仙, N. Sawanobori, 等. 掺Er3+氟氧化物玻璃陶瓷的直接上转换敏化发光[J]. 物理学报, 2000, 49(12): 2482-2487.
[28]  郑创, 郑果林, 刘帅, 等. 稀土铕高分子荧光配合物的制备及性能研究[J]. 材料科学与工艺, 2020(4): 24-30.
[29]  Li, C., Huang K., Chi, Y., et al. (2009) Lanthanide-Organic Cation Frameworks with Zeolite Gismondine Topology and Large Cavities from Intersected Channels Templated by Polyoxometalate Counterions. Inorganic Chemistry, 48, 2010-2017.
https://doi.org/10.1021/ic801846h
[30]  谭克, 滕云雷, 阚玉和. BPh2(mqp)的电子结构和光谱性质的含时密度泛函理论研究[J]. 高等学校化学学报, 2005, 26(1): 84-87.
[31]  尹伟. 稀土铕的双Schiff碱络合物的发光[J]. 广东教育学院学报, 2005, 25(3): 61-66.
[32]  孙若愚, 吕妍, 张敏芝, 等. 稀土2-[2-(4-苯甲酸甲酯)乙烯基]-8-羟基喹啉配合物的合成、表征及荧光性质[J]. 中国稀土学报, 2019, 37(6): 689-696.
[33]  张明. 若干联吡啶类配体及金属配合物的合成、电子结构与光电性质的研究[D]: [博士学位论文]. 长春: 吉林大学, 2004.
[34]  刘兴旺, 王娜, 高赛生态, 等. β-二酮(HTPP)、邻菲罗啉分别与铕和铽三元配合物的合成、荧光性能及理论研究[J]. 有机化学, 2009, 29(10): 1676-1681.
[35]  Wei, F., Bai, C. and Hu, H.M. (2021) Novel Luminescent Europium-Centered Hybrid Material Covalently Grafted with Organically Modified Titania via 2-Substituted Imidazophenanthroline for Fluorescence Sensing. Journal of Rare Earths, 39, 666-673.
https://doi.org/10.1016/j.jre.2020.04.012
[36]  马腾飞. 近红外和红光稀土荧光材料的合成和发光性质的研究[D]: [硕士学位论文]. 长春: 吉林建筑大学, 2016.
[37]  张庆瑞, 邓瑞平, 刘英博, 等. ErxYb1?x(TPB)3Bath (x = 0,0.218,0.799,0.896,0.987,1)配合物的近红外发光性能[J]. 无机化学学报, 2017, 33(11): 2011-2016.
[38]  孙裕容, 高燕, 尹超, 等. 高温固相法合成Ce3+、Dy3+掺杂的YGa3(BO3)4及其荧光性质[J]. 中国稀土学报, 2020, 185(3): 157-169.
[39]  于笑寒, 王宏胜, 韩春杰, 等. 二维配位聚合物[Tb(1,4-bdc)1.5(phen)(H2O)]n的结构与光致发光性能研究[J]. 人工晶体学报, 2019, 48(6): 1055-1059.
[40]  孙乃群, 赵希瑾, 杨亚敏, 等. 含4-苯甲酰苯甲酸铽配合物在NUV基LED应用中的合成及发光性能[J]. 中国稀土学报英文版, 2016, 34(2): 130-136.
[41]  王莹, 马冬云, 郭英雪, 等. Sm(N-PA)3phen配合物的合成表征及荧光性[J]. 吉首大学学报(自然科学版), 2019, 40(4): 62-64.
[42]  Wang, H., Xia, H.P., Shi, X.D., et al. (2019) Fluorescence Properties of Eu3+ Doped in Na5Lu9F32 Single Crystals. Journal of Wuhan University of Technology (Materials Science), 34, 317-323.
https://doi.org/10.1007/s11595-019-2054-6
[43]  Quan, C., Liu, J.Y., Sun, W., et al. (2020) Highly Sensitive and Selective Fluorescence Chemosensors Containing Phenanthroline Moieties for Detection of Zn2+ and Cd2+ Ions. Chemical Papers, 74, 485-497.
https://doi.org/10.1007/s11696-019-00893-9
[44]  肖云清. 用于水介质中离子荧光识别与探测的稀土有机框架物[D]: [硕士学位论文]. 杭州: 浙江大学, 2010.
[45]  Song, H.M., Liu, G., Fan, C.B., et al. (2020) A Novel Fluorescent Sensor for Al3+ and Zn2+ Based on a New Europium Complex with a 1,10-Phenanthroline Ligand. Journal of Rare Earth, 39, 460-468.
https://doi.org/10.1016/j.jre.2020.02.020
[46]  Wu, X.F., Zhang, Y.A., Zhan, S.P., et al. (2019) Tracing of Dye Molecules in Living Plants through NaGdF4:Yb3+, Er3+ Fluorescent Nanoprobes. Journal of Rare Earths, 37, 237-241.
https://doi.org/10.1016/j.jre.2018.08.007
[47]  Xu, A., Zhang, L., Zeng, H., et al. (2018) Fluorometric Determination of the Activity of Alkaline Phosphatase Based on the Competitive Binding of Gold Nanoparticles and Pyrophosphate to CePO4:Tb Nanorods. Mikrochimica Acta, 185, 1-8.
https://doi.org/10.1007/s00604-018-2827-1
[48]  张爱琴, 王芷, 胥伟, 等. Eu(TTA)2(phen)MAA/PVA纳米复合纤维的制备及发光性能[J]. 太原理工大学学报, 2019, 50(6): 798-805.
[49]  郭凌华, 龙浩, 姜慧娥, 等. 一种胶版防伪油墨稀土发光材料制备的研究及应用[J]. 包装工程, 2019, 40(13): 137-142.
[50]  Li, Z.R., Xi, P., Zhao, M., et al. (2010) Preparation and Characterization of Rare Earth Fluorescent Anti-Counterfeiting Fiber via Sol-Gel Method. Journal of Rare Earths, 28, 211-214.
https://doi.org/10.1016/S1002-0721(10)60289-X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133