全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄202井区微地震深井监测适应性研究及应用
Research and Application of Down Hole Microseismic Monitoring Adaptability in Huang 202 Well Area

DOI: 10.12677/AG.2021.118107, PP. 1112-1122

Keywords: 监测方案优化,深层页岩气压裂,微地震深井监测,储层压裂
Monitoring Plan Optimization
, Deep Shale Gas Fracturing, Down Hole Microseismic Monitoring, Reservoir Fracturing

Full-Text   Cite this paper   Add to My Lib

Abstract:

微地震监测是压裂裂缝成像的关键技术,近年来随着石油行业对于非常规油气资源的重视以及为了低渗透油气藏增产而进行压裂施工的有关需求的增长,微地震监测已经成为地球物理界一种重要的技术。随着页岩气勘探开发的不断深入,储层埋深由早期约3000 m的垂深逐渐增加4000 m以下,对微地震监测效果产生了一定的影响,如何优化监测方案,提升监测效果,促进页岩气资源的有效开发,是目前微地震监测面临的首要难题,而不同监测方式的适应性成为关键因素。本文以四川盆地黄202井区为例,利用微地震深井监测数据,开展与3500 m以浅微地震深井监测成果对比分析,为该地区下步4000 m以深页岩气压裂监测方案选择提供指导,对提升监测效果、支撑改善储层压裂增产作业效果具有重要的价值和实践意义。
Microseismic monitoring is a key technology for fracture imaging. In recent years, as the petro-leum industry attaches importance to unconventional oil and gas resources and the demand for fracturing construction to increase production of low-permeability oil and gas reservoirs have increased, microseismic monitoring has become an important geophysical technology in the world. With the continuous deepening of shale gas exploration and development, the vertical depth of the reservoir gradually increased from about 3000 m to below 4000 m, which has a certain impact on the effect of microseismic monitoring. How to optimize the monitoring plan, improve the monitoring effect, and promote the effective development of shale gas resources is currently the primary problem, then the adaptability of different monitoring methods has become a key factor. This paper takes the Huang 202 well area in the Sichuan Basin as an example, and use the down hole microseismic monitoring data to carry out comparative analysis with the down hole monitoring results of wells which are below 3500 m, and provide guidance for the monitoring plan of shale gas wells for over 4000 m in this area. The monitoring effect and the effect of increasing production have important value and practical significance.

References

[1]  刘建中, 唐春华, 左建军. 微地震监测技术发展方向及应用[J]. 中国工程科学, 2013, 15(10): 54-58.
[2]  赵博雄, 王忠仁, 刘瑞, 雷立群. 国内外微地震监测技术综述[J]. 地球物理学进展, 2014, 29(4): 1882-1888.
[3]  王国顺, 刘建中, 柳林旺. 微地震方法检测镇泾油田长8油藏压裂、注水效果分析[J]. 中国工程科学, 2012, 14(4): 40-44.
[4]  张佳琦. 超低渗油藏井中微地震监测技术机理[J]. 石化技术, 2018, 25(9): 306, 310.
[5]  冯天. 油气田开发中微地震监测技术的应用[J]. 化工设计通讯, 2018, 44(7): 47.
[6]  姬程伟, 贺彤彤, 别勇杰, 蒋钧, 梁涛, 曹培旺, 等. 超低渗油藏井中微地震监测技术机理及应用[J]. 石油化工应用, 2017, 36(7): 48-51.
[7]  刘百红, 秦绪英, 郑四连, 杨强. 微地震监测技术及其在油田中的应用现状[J]. 勘探地球物理进展, 2005, 28(5): 325-329.
[8]  于辉, 张海江. 水力压裂微地震监测稳定共振频率信号的解释[J]. 物探化探计算技术, 2017, 39(1): 90-95.
[9]  吕世超, 郭晓中, 贾立坤. 水力压裂井中微地震监测资料处理与解释[J]. 油气藏评价与开发, 2013, 3(6): 37-42.
[10]  刘建中, 王春耘, 刘继民, 赵玉武, 刘志鹏. 用微地震监法监测油田生产动态[J]. 石油勘探与开发, 2004, 31(2): 71-73.
[11]  严永新, 张永华, 陈祥, 罗家群, 章新文. 微地震技术在裂缝监测中的应用研究[J]. 地学前缘, 2013, 20(3): 270-274.
[12]  唐杰, 方兵, 蓝阳, 孙成禹. 压裂诱发的微地震震源机制及信号传播特性[J]. 石油地球物理勘探, 2015, 50(4): 643-649.
[13]  范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003: 65-72.
[14]  李国永, 朱福金, 任利斌, 田新民, 赵娜. 微地震注水前缘监测技术在高尚堡中深层油藏的应用[J]. 特种油气藏, 2010, 17(4): 104-106.
[15]  钟尉, 朱思宇. 地面微地震监测技术在川南页岩气井压裂中的应用[J]. 油气藏评价与开发, 2014, 4(6): 71-74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133