全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

智能可穿戴疲劳监测及预警系统
An Intelligent Wearable System for Fatigue Monitoring and Warning

DOI: 10.12677/HJBM.2021.114024, PP. 187-194

Keywords: 疲劳状态,心率变异性,支持向量机
Fatigue State
, Heart Rate Variability, Support Vector Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现精神疲劳状态的客观量化连续监测,本研究基于心率变异性的特征信息,研究了不同疲劳状态的量化识别方法。设计实验采集了不同疲劳状态下的心电信号,采用小波变换去除噪声干扰,提取了心率变异性的时域、频域等特征参数,并对所提取的特征参数对比分析以构建支持向量机等多种分类模型,最终利用支持向量机算法实现了正常、疲劳、嗜睡三种不同程度的精神状态分类。结果表明,本方法对于疲劳状态识别具有较高准确性,通过优化支持向量机的参数,对于不同疲劳状态的识别精度可超过80%。将此技术运用到日常生活中,可对人的主观疲劳状态进行客观化评价,在交通、教育、医学监护等方面具有重要的研究意义和应用前景。
In order to achieve the objective quantitative continuous monitoring of mental fatigue state, the quantitative identification method of different fatigue states is studied based on the characteristic information of heart rate variability. The ECG signals under different learning duration were col-lected in the design experiment. Wavelet transform was used to reduce the noises or interference, and characteristic parameters of heart rate variability (HRV) were extracted in the time domain and frequency domain. The extracted characteristic parameters were compared and analyzed to construct various classification models such as support vector machine. Finally, three mental states of normal, fatigue and drowsiness were classified by support vector machine algorithm. The results show that this method has a high accuracy for fatigue state identification, and the identification ac-curacy of different fatigue state can be more than 80% by optimizing the parameters of support vector machine. The application of this technology in daily life can objectively evaluate people’s subjective fatigue state, which has important research significance and application prospect in transportation, education, medical monitoring and so on.

References

[1]  薛慧, 戴新娟. 护理人员疲劳现状及其影响因素的研究进展[J]. 护理学杂志, 2012, 27(12): 92-94.
[2]  杨妮. 基于HRV的心理压力识别算法研究与实现[D]: [硕士学位论文]. 西安: 西安工业大学, 2019.
[3]  Singh, R.R., Conjeti, S. and Banerjee, R. (2013) A Comparative Evaluation of Neural Network Classifiers for Stress Level Analysis of Automotive Drivers Using Physiological Signals. Biomedical Signal Processing and Control, 8, 740-754.
https://doi.org/10.1016/j.bspc.2013.06.014
[4]  马永昊. 基于心电的非接触精神疲劳监测系统的设计与研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2019.
[5]  顾秀秀. 可穿戴心电信号特征提取及分类[D]: [硕士学位论文]. 南京: 南京大学, 2019.
[6]  侯晓晴, 仝泽友, 刘晓文. 基于改进小波变换的QRS特征提取算法研究[J]. 现代电子技术, 2020, 43(13): 57-61.
[7]  卢菲, 高振斌. 基于小波变换的QRS波群检测[J]. 电子设计工程, 2011, 19(23): 46-49.
[8]  Wu, X., Wang, Z., Xu, B. and Ma, X. (2020) Optimized Pan-Tompkins Based Heartbeat Detection Algorithms. 2020 Chinese Control and Decision Conference, Hefei, 22-24 August 2020, 892-897.
https://doi.org/10.1109/CCDC49329.2020.9164736
[9]  丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 1-10.
[10]  李园园, 刘汉, 李东升, 王刚. HRV分析在驾驶疲劳中的应用研究[J]. 汽车实用技术, 2021, 46(6): 193-194.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133