|
新型电极材料的研究进展
|
Abstract:
电解水是大规模制氢的重要途径,为了降低阳极阴极过电位以节约能耗,研究开发低过电位、高催化活性的电极材料具有重要的意义。影响电极材料催化活性的主要因素有结构因素和能量因素。本文主要简述了电解水的基本原理,以及电极材料的研究现状,期待未来能够开发出具有低过电位、高催化活性和高稳定性的新型电解水电极材料。
Electrocatalysis water splitting is an important way for large-scale hydrogen production. In order to reduce the anode and cathode overpotential to save energy consumption, it is of great significance to research and develop electrode materials with low overpotential and high catalytic activity. The main factors affecting the catalytic activity of electrode materials are structural factors and energy factors. In this paper, the basic principle of electrolysis of water and the research status of electrode materials are summarized, and new electrolysis hydroelectric electrode materials with low over- potential, high catalytic activity and high stability are expected to be developed in the future.
[1] | Meng, N., Leung, D.Y. and Leung, M.K. (2006) An Overview of Hydrogen Production from Biomass. Fuel Processing Technology, 87, 461-472. https://doi.org/10.1016/j.fuproc.2005.11.003 |
[2] | Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0 |
[3] | Zeng, K. and Zhang, D. (2010) Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Progress in Energy and Combustion Science, 36, 307-326. https://doi.org/10.1016/j.pecs.2009.11.002 |
[4] | Wei, Z., Ji, M. and Sun, C. (2007) Water Electrolysis on Carbon Electrodes Enhanced by Surfactant. Electrochimica Acta, 52, 3323-3329. https://doi.org/10.1016/j.electacta.2006.10.011 |
[5] | Reier, T., Oezaslan, M. and Strasser, P. (2012) Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2, 1765-1772.
https://doi.org/10.1021/cs3003098 |
[6] | Diaz-Morales, O., Calle-Vallejo, F., Munck, C. and Koper, M.T.M. (2013) Electrochemical Water Splitting by Gold: Evidence for an Oxide Decomposition Mechanism. Chemical Science, 4, 2334-2343.
https://doi.org/10.1039/C3SC50301A |
[7] | Lee, Y., Suntivich, J., May, K.J. and Shao-Horn, Y. (2012) Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters, 3, 399-404.
https://doi.org/10.1021/jz2016507 |
[8] | Ten, C.W. and Hu, C. (1992) Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides. Journal of the Electrochemical Society, 139, 2158-2163. https://doi.org/10.1149/1.2221195 |
[9] | Terezo, A.J. and Pereira, E.C. (2000) Fractional Factorial Design Applied to Investigate Properties of Ti/IrO2-Nb2O5 Electrodes. Electrochimica Acta, 45, 4351-4358. https://doi.org/10.1016/S0013-4686(00)00540-5 |
[10] | Yeo, B.S. and Alexis, T.B. (2011) Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society, 133, 5587-5593. https://doi.org/10.1021/ja200559j |
[11] | Balej, J., Divisek, J., Schmitz, H. and Mergel, J. (1992) Preparation and Properties of Raney Nickel Electrodes on Ni-Zn Base for H2 and O2 Evolution from Alkaline Solutions Part I: Electrodeposition of Ni-Zn Alloys from Chloride Solutions. Materials Chemistry and Physics, 22, 705-710. https://doi.org/10.1007/BF01027497 |
[12] | Fazle, A.K.M. and Tarafdar, S.A. (2002) Electrochemical Studies of a Nickel-Copper Electrode for the Oxygen Evolution Reaction (OER). International Journal of Hydrogen Energy, 27, 879-884.
https://doi.org/10.1016/S0360-3199(01)00185-9 |
[13] | Landon, J., Demeter, E., ?no?lu, N., Keturakis, C., Wachs, I.E., Vasi?, R., et al. (2012) Spectroscopic Characterization of Mixed Fe-Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis, 2, 1793-1801. https://doi.org/10.1021/cs3002644 |
[14] | Trotochaud, L., Young, S.L., Ranney, J.K. and Boettcher, S.W. (2014) Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 136, 6744-6753. https://doi.org/10.1021/ja502379c |
[15] | Trotochaud, L., Ranney, J.K., Williams, K.N. and Boettcher, S.W. (2012) Solution-Cast Metal Oxide Thin-Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, 134, 17253-17261.
https://doi.org/10.1021/ja307507a |
[16] | Louie, M.W. and Bell, A.T. (2013) An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society, 135, 12329-12337. https://doi.org/10.1021/ja405351s |
[17] | Smith, R.D.L., Prévot, M.S., Fagan, R.D., Trudel, S. and Berlinguette, C.P. (2013) Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel. Journal of the American Chemical Society, 135, 11580-11586. https://doi.org/10.1021/ja403102j |
[18] | Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J.Z., Zhou, J., et al. (2013) An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 135, 8452-8455.
https://doi.org/10.1021/ja4027715 |
[19] | Smith, R.D.L., Prévot, M.S., Fagan, R.D., Zhang, Z., Sedach, P.A., Siu, M.K.J., et al. (2013) Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science, 340, 60-63.
https://doi.org/10.1126/science.1233638 |
[20] | Song, F. and Hu, X. (2014) Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. Nature Communications, 5, Article No. 4477. https://doi.org/10.1038/ncomms5477 |
[21] | McCrory, C.C.L., Jung S, Peters, J.C. and Jaramillo, T.F. (2013) Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135, 16977-16987.
https://doi.org/10.1021/ja407115p |
[22] | Yu, X., Sun, Z., Yan, Z., Xiang, B., Liu, X. and Du, P. (2014) Direct Growth of Porous Crystalline NiCo2O4Nanowire Arrays on a Conductive Electrode for High-Performance Electrocatalytic Water Oxidation. Journal of Materials Chemistry A, 2, 20823-20831. https://doi.org/10.1039/C4TA05315J |
[23] | Zou, X., Su, J., Silva, R., Goswami, A., Sathe, B.R. and Asefa, T. (2013) Efficient Oxygen Evolution Reaction Catalyzed by Low-Density Ni-Doped Co3O4 Nanomaterials Derived from Metal-Embedded Graphitic C3N4. Chemical Communications, 49, 7522-7524. https://doi.org/10.1039/C3CC42891E |
[24] | Ratcliff, E.L., Meyer, J., Steirer, K.X., Garcia, A., Berry, J.J., Ginley, D.S., et al. (2011) Evidence for Near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemical Materials, 23, 4988-5000.
https://doi.org/10.1021/cm202296p |
[25] | Bediako, D.K., Lassalle-Kaiser, B., Surendranath, Y. and Daniel, G.N. (2012) Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst. Journal of the American Chemical Society, 134, 6801-6809.
https://doi.org/10.1021/ja301018q |
[26] | McAlpin, J.G., Surendranath, Y., Dincǎ, M., Stich, T.A., Stoian, S.A., Casey, W.H., et al. (2010) Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH. Journal of the American Chemical Society, 132, 6882-6883.
https://doi.org/10.1021/ja1013344 |
[27] | Mattioli, G., Giannozzi, P., Amore Bonapasta, A. and Guidoni, L. (2013) Reaction Pathways for Oxygen Evolution Promoted by Cobalt Catalyst. Journal of the American Chemical Society, 135, 15353-15363.
https://doi.org/10.1021/ja401797v |
[28] | Gardner, G.P., Go, Y.B., Robinson, D.M., Smith, P.F., Hadermann, J., Abakumov, A., et al. (2012) Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water. Angewandte Chemie International Edition, 51, 1616-1619. https://doi.org/10.1002/anie.201107625 |
[29] | Singh, R.N., Tiwari, S.K., Singh, S.P., Singh, N.K., Poillerat, G. and Chartier, P. (1996) Synthesis of (La, Sr)CoO3 Perovskite Films Via a Sol-Gel Route and Their Physicochemical and Electrochemical Surface Characterization for Anode Application in Alkaline Water Electrolysis. Journal of the Chemical Society, Faraday Transactions, 92, 2593-2597. https://doi.org/10.1039/FT9969202593 |
[30] | Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B. and Shao-Horn, Y. (2011) A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 334, 1383-1385.
https://doi.org/10.1126/science.1212858 |
[31] | Grimaud, A., May, K.J., Carlton, C.E., Lee, Y.-L., Risch, M., Hong, W.T., et al. (2013) Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution. Nature Communications, 4, Article No. 2439.
https://doi.org/10.1038/ncomms3439 |
[32] | Laursen, A.B., Kegnaes, S., Dahl, S. and Chorkendorff, I. (2012) Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photo Electrocatalytic Hydrogen Evolution. Energy & Environmental Science, 5, 5577-5591.
https://doi.org/10.1039/C2EE02618J |
[33] | Wang, J., Zhang, Y., Capuano, C.B. and Ayers, K.E. (2015) Ultralow Charge-Transfer Resistance with Ultralow Pt Loading for Hydrogen Evolution and Oxidation Using Ru@PtCore-Shell Nanocatalysts. Scientific Reports, 5, Article No. 12220. https://doi.org/10.1038/srep12220 |
[34] | Subbaraman, R., Tripkovic, D., Strmcnik, D., Chang, K.-C., Uchimura, M., Paulikas, A.P., et al. (2011) Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces. Science, 334, 1256-1260.
https://doi.org/10.1126/science.1211934 |
[35] | Conway, B.E. and Jerkiewicz, G. (2000) Relation of Energies and Coverages of Underpotential and Overpotential Deposited H at Pt and Other Metals to the ‘Volcano Curve’ for Cathodic H2 Evolution Kinetics. Electrochimica Acta, 45, 4075-4083. https://doi.org/10.1016/S0013-4686(00)00523-5 |
[36] | Greeley, J., N?rskov, J.K., Kibler, L.A., El-Aziz, A.M. and Kolb, D.M. (2006) Hydrogen Evolution over Bimetallic Systems: Understanding the Trends. ChemPhysChem, 7, 1032-1035. https://doi.org/10.1002/cphc.200500663 |
[37] | Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L.V., Cheng, J., et al. (2012) Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Letters, 13, 240-247. https://doi.org/10.1021/nl303940z |
[38] | Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., et al. (2010) Low-Cost Hydrogen-Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates. Angewandte Chemie International Edition, 49, 9859-9862. https://doi.org/10.1002/anie.201004718 |
[39] | Bai, S., Wang, C., Deng, M., Gong, M., Bai, Y., Jiang, J., et al. (2014) Surface Polarization Matters: Enhancing the Hydrogen-Evolution Reaction by Shrinking Pt Shells in Pt-Pd-Graphene Stack Structures. Angewandte Chemie International Edition, 53, 12120-12124. https://doi.org/10.1002/anie.201406468 |
[40] | Chen, Z., Ye, S., Wilson, A.R., Ha, Y.-C. and Wiley, B.J. (2014) Optically Transparent Hydrogen Evolution Catalysts Made from Networks of Copper-Platinum Core-Shell Nanowires. Energy & Environmental Science, 7, 1461-1467.
https://doi.org/10.1039/C4EE00211C |
[41] | Yang, X., Koel, B.E., Wang, H., Chen, W. and Bartynski, R.A. (2012) Nanofaceted C/Re(112?1): Fabrication, Structure, and Template for Synthesizing Nanostructured Model Pt Electrocatalyst for Hydrogen Evolution Reaction. ACS Nano, 6, 1404-1409. https://doi.org/10.1021/nn204615j |
[42] | Danilovic, N., Subbaraman, R., Strmcnik, D., Chang, K.-C., Paulikas, A.P., Stamenkovic, V.R., et al. (2012) Enhancing the Alkaline Hydrogen Evolution Reaction Activity Through the Bifunctionality of Ni(OH)2/Metal Catalysts. Angewandte Chemie International Edition, 51, 12495-12498. https://doi.org/10.1002/anie.201204842 |
[43] | Jak?i?, M.M. (1984) Electrocatalysis of Hydrogen Evolution in the Light of the Brewer-Engel Theory for Bonding in Metals and Intermetallic Phases. Electrochimica Acta, 29, 1539-1550. https://doi.org/10.1016/0013-4686(84)85007-0 |
[44] | Lee, H.K., Jung, E.E. and Lee, J.S. (1998) Enhancement of Catalytic Activity of Raney Nickel by Cobalt Addition. Materials Chemistry and Physics, 55, 89-93. https://doi.org/10.1016/S0254-0584(98)00126-6 |
[45] | Tasi?, G.S., La?njevac, U., Tasi?, M.M., Kaninski, M.M., Nikoli?, V.M., ?ugi?, D.L., et al. (2013) Influence of Electrodeposition Parameters of Ni-W on Ni Cathode for Alkaline Water Electrolyser. International Journal of Hydrogen Energy, 38, 4291-4297. https://doi.org/10.1016/j.ijhydene.2013.01.193 |
[46] | Yüce, A.O., D?ner, A. and Karda?, G. (2013) NiMn Composite Electrodes as Cathode Material for Hydrogen Evolution Reaction in Alkaline Solution. International Journal of Hydrogen Energy, 38, 4466-4473.
https://doi.org/10.1016/j.ijhydene.2013.01.160 |
[47] | Lu, Q., Hutchings, G.S., Yu, W., Zhou, Y., Forest, R.V., Tao, R., et al. (2015) Highly Porous Non-Precious Bimetallic Electrocatalysts for Efficient Hydrogen Evolution. Nature Communications, 6, Article No. 6567.
https://doi.org/10.1038/ncomms7567 |
[48] | Liao L., Wang S., Xiao J., Bian, X., Zhang, Y., Scanlon, M.D., et al. (2014) A Nanoporous Molybdenum Carbide Nanowire as an Electrocatalyst for Hydrogen Evolution Reaction. Energy & Environmental Science, 7, 387-392.
https://doi.org/10.1039/C3EE42441C |
[49] | Jaramillo, T.F., J?rgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I., et al. (2007) Identification of Active Edge Sites for Electrochemical H2Evolution from MoS2Nanocatalysts. Science, 317, 100-102.
https://doi.org/10.1126/science.1141483 |
[50] | Wang, H., Lu, Z., Xu, S., Kong, D., Cha, J.J., Zheng, G., et al. (2013) Electrochemical Tuning of Vertically Aligned MoS2 Nanofilms and its Application in Improving Hydrogen Evolution Reaction. Proceedings of the National Academy of Sciences of the United States of America, 110, 19701-19706. https://doi.org/10.1073/pnas.1316792110 |
[51] | Wang, H., Lu, Z., Kong, D., Sun, J., Hymel, T.M. and Cui, Y. (2014) Electrochemical Tuning of MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano, 8, 4940-4947.
https://doi.org/10.1021/nn500959v |
[52] | Chang, Y., Lin, C., Chen, Z., Hsu, C.-L., Lee, Y.-H., Zhang, W., et al. (2013) Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams. Advanced Materials, 25, 756-760.
https://doi.org/10.1002/adma.201202920 |
[53] | Chen, W.F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., et al. (2013) Biomass-Derived Electrocatalytic Composites for Hydrogen Evolution. Energy & Environmental Science, 6, 1818-1826. https://doi.org/10.1039/C3EE40596F |
[54] | Kong, D., Wang, H., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., et al. (2013) Synthesis of MoS2 and MoSe2Films with Vertically Aligned Layers. Nano Letters, 13, 1341-1347. https://doi.org/10.1021/nl400258t |
[55] | Chen, W.F., Sasaki, K., Marinkovic, N., Marinkovic, N., Xu, W., Muckerman, J.T., et al. (2013) Highly Active and Durable Nanostructured Molybdenum Carbide Electrocatalysts for Hydrogen Production. Energy & Environmental Science, 6, 943-951. https://doi.org/10.1039/C2EE23891H |
[56] | Kibsgaard, J. and Jaramillo, T.F. (2014) Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 126, 14661-14665.
https://doi.org/10.1002/ange.201408222 |
[57] | Xiao, P., Thia, L., Alam Sk, M., Ge, X., Lim, R.J., Wang, J.-Y., et al. (2014) Molybdenum Phosphide As an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Energy & Environmental Science, 7, 2624-2629.
https://doi.org/10.1039/C4EE00957F |
[58] | Smith, A.J., Chang, Y., Raidongia, K., Chen, T.-Y., Li, L.-J. and Huang, J. (2014) Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production. Advanced Energy Materials, 4, Article ID: 1400398. https://doi.org/10.1002/aenm.201400398 |
[59] | Chen, W., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., et al. (2012) Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angewandte Chemie International Edition, 51, 6131-6135. https://doi.org/10.1002/anie.201200699 |
[60] | Cao, B., Veith, G.M., Neuefeind, J.C., Adzic, R.R. and Khalifah, P.G. (2013) Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135, 19186-19192. https://doi.org/10.1021/ja4081056 |
[61] | Tran, P.D., Nguyen, M., Pramana, S.S., Bhattacharjee, A., Chiam, S.Y., Fize, J., et al. (2012) Copper Molybdenum Sulfide: A New Efficient Electrocatalyst for Hydrogen Production from Water. Energy & Environmental Science, 5, 8912-8916. https://doi.org/10.1039/C2EE22611A |