|
局域表面等离子共振的影响因素及其研究进展
|
Abstract:
由于纳米材料的局域表面等离子共振(Localized Surface Plasmon Resonance, LSPR)性质,使其在化学(生物)传感分析、成像、追踪、光热治疗及催化领域获得了广泛的应用。本论文将着重表面等离子共振的原理及其影响因素,并针对局域表面等离子共振效应的研究进展进行了总结,为表面等离激元深入的理解和探究奠定一定的基础。
Due to the Localized Surface Plasmon Resonance (LSPR) properties of nanomaterials, it has been widely used in the fields of chemical (bio)sensing analysis, imaging, tracking, photothermal therapy and catalysis. This paper will focus on the principle of surface plasmon resonance and its influencing factors, and summarize the research progress of local surface plasmon resonance effects, which will lay a certain foundation for the in-depth understanding and exploration of surface plasmons.
[1] | Stix, G. (2001) Little Big Science. Scientific American, 285, 32-37. https://doi.org/10.1038/scientificamerican0901-32 |
[2] | Roduner, E. (2006) Size Matters, Why Nanomaterials are Different. Chemical Society Reviews, 35, 583-592.
https://doi.org/10.1039/b502142c |
[3] | Guo, S.J. and Wang, E.K. (2011) Noble Metal Nanomaterials, Controllable Synthesis and Application in Fuel Cells and Analytical Sensors. Nano Today, 6, 240-264. https://doi.org/10.1016/j.nantod.2011.04.007 |
[4] | Fan, Z.X. and Zhang, H. (2016) Crystal Phase-Controlled Synthesis, Properties and Applications of Noble Metal Nanomaterials. Chemical Society Reviews, 45, 63-82. https://doi.org/10.1039/C5CS00467E |
[5] | Huang, J.L., Lin, L.Q., Sun, D.H., Chen, H.M., Yang, D.P. and Li, Q.B. (2015) Bio-Inspired Synthesis of Metal Nanomaterials and Applications. Chemical Society Reviews, 44, 6330-6374. https://doi.org/10.1039/C5CS00133A |
[6] | Willets, K.A. and Duyne, R.P.V. (2007) Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58, 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607 |
[7] | Vincenzo, A., Roberto, P., Marco, F., Onofrio, M.M. and Maria, A.I. (2017) Surface Plasmon Resonance in Gold Nanoparticles: A Review. Journal of Physics: Condensed Matter, 29, Article ID: 203002.
https://doi.org/10.1088/1361-648X/aa60f3 |
[8] | Amendola, V. (2016) Surface Plasmon Resonance of Silver and Gold Nanoparticles in the Proximity of Graphene Studied Using the Discrete Dipole Approximation Method. Physical Chemistry Chemical Physics, 18, 2230-2241.
https://doi.org/10.1039/C5CP06121K |
[9] | Amendola, V., Rizzi, G.A., Polizzi, S. and Meneghetti, M. (2005) Synthesis of Gold Nanoparticles by Laser Ablation in Toluene, Quenching and Recovery of the Surface Plasmon Absorption. Journal of Physical Chemistry B, 109, 23125-23128. https://doi.org/10.1021/jp055783v |
[10] | Mayer, K.M. and Hafner, J.H. (2011) Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111, 3828-3857. https://doi.org/10.1021/cr100313v |
[11] | Link, S. and El-Sayed, M.A. (1999) Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. Journal of Physical Chemistry B, 103, 4212-4217. https://doi.org/10.1021/jp984796o |
[12] | Bonaccorso, F., Zerbetto, M., Ferrari, A.C. and Amendola, V. (2013) Sorting Nanoparticles by Centrifugal Fields in Clean Media. The Journal of Physical Chemistry C, 117, 13217-13229. https://doi.org/10.1021/jp400599g |
[13] | Park, J., Kang, H., Kim, Y.H., Lee, S.W., Lee, T.G. and Wi, J.S. (2016) Physically-Synthesized Gold Nanoparticles Containing Multiple Nanopores for Enhanced Photothermal Conversion and Photoacoustic Imaging. Nanoscale, 8, 15514-15520. https://doi.org/10.1039/C6NR05376A |
[14] | Wu, H.L., Kuo, C.H. and Huang, M.H. (2010) Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir, 26, 12307-12313.
https://doi.org/10.1021/la1015065 |
[15] | Zijlstra, P., Chon, J.W.M. and Gu, M. (2009) Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods. Nature, 459, 410-413. https://doi.org/10.1038/nature08053 |
[16] | Zhang, Q., Li, W.Y., Moran, C., Zeng, J., Chen, J.Y., Wen, L.P., et al. (2010) Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30 - 200 nm and Comparison of Their Optical Properties. Journal of the American Chemical Society, 132, 11372-11378. https://doi.org/10.1021/ja104931h |
[17] | He, H.L., Xu, X.L., Wu, H.X. and Jin, Y.D. (2012) Enzymatic Plasmonic Engineering of Ag/Au Bimetallic Nanoshells and Their Use for Sensitive Optical Glucose Sensing. Advanced Materials, 24, 1736-1740.
https://doi.org/10.1002/adma.201104678 |
[18] | Li, C.C, Shuford, K.L., Chen, M.H., Lee, E.J. and Cho, S.O. (2008) A Facile Polyol Route to Uniform Gold Octahedra with Tailorable Size and Their Optical Properties. Acs Nano, 2, 1760-1769. https://doi.org/10.1021/nn800264q |
[19] | Li, Y.X., Ma, J. and Ma, Z.F. (2013) Synthesis of Gold Nanostars with Tunable Morphology and Their Electrochemical Application for Hydrogen Peroxide Sensing. Electrochimica Acta, 108, 435-440.
https://doi.org/10.1016/j.electacta.2013.06.141 |
[20] | Stuart, W.P. and Paul, M. (2006) Gold Nanorod Extinction Spectra. Journal of Applied Physics, 99, Article ID: 123504.
https://doi.org/10.1063/1.2203212 |
[21] | Poletti, A., Fracasso, G., Conti, G., Pilot, R. and Amendola, V. (2015) Laser Generated Gold Nanocorals with Broadband Plasmon Absorption for Photothermal Applications. Nanoscale, 7, 13702-13714.
https://doi.org/10.1039/C5NR03442F |
[22] | Liu, D.L., Zhou, F., Li, C.C., Zhang, T., Zhang, H.H., Cai W.P., et al. (2015) Black Gold, Plasmonic Colloidosomes with Broadband Absorption Self-Assembled from Monodispersed Gold Nanospheres by Using a Reverse Emulsion System. Angewandte Chemie International Edition, 54, 9596-9600. https://doi.org/10.1002/anie.201503384 |
[23] | Yang, D., Yang, G.X., Yang, P.P., Lv, R.C., Gai, S.L., Li, C.X., et al. (2017) Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Advanced Functional Materials, 27, Article ID: 1700371. https://doi.org/10.1002/adfm.201700371 |
[24] | Johnson, A.D., Cheng, F., Tsai, Y. and Shih, C.K. (2017) Giant Enhancement of Defect-Bound Exciton Luminescence and Suppressionof Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures. Nano Letters, 17, 4317-4322. https://doi.org/10.1021/acs.nanolett.7b01364 |
[25] | Wang, X.L., Ke, Y.J., Pan, H.Y., Ma, K, Xiao, Q.Q. and Yin, D.Q. (2015) Cu-Deficient Plasmonic Cu2?xS Nanoplate Electrocatalysts for Oxygen Reduction. ACS Catalysis, 5, 2534-2540. https://doi.org/10.1021/acscatal.5b00115 |
[26] | Amendola, V., Scaramuzza, S., Litti, L., Meneghetti, M., Zuccolotto, G. and Rosato, A. (2014) Magneto-Plasmonic Au-Fe Alloy Nanoparticles Designed for Multimodal SERS-MRI-CT Imaging. Small, 10, 2476-2486.
https://doi.org/10.1002/smll.201303372 |
[27] | Langhammer, C., Yuan, Z., Zori?, I. and Kasemo, B. (2006) Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Letters, 6, 833-838. https://doi.org/10.1021/nl060219x |
[28] | Dai, Y.Y., Xia, Y.Y., Jiang, T., Chen, A., Zhang, Y.W., Bai, Y.J., et al. (2018) Graphene Plasmonic Resonances: Dynamical Tuning of Graphene Plasmonic Resonances by Ultraviolet Illuminations. Advanced Optical Materials, 6, Article ID: 1870023. https://doi.org/10.1002/adom.201870023 |
[29] | Amendola, V., Saija, R., Maragò, O.M. and Iatì, M.A. (2015) Superior Plasmon Absorption in Iron-Doped Gold Nanoparticles. Nanoscale, 7, 8782-8792. https://doi.org/10.1039/C5NR00823A |
[30] | Chen, J.Y., Wiley, B., Mclellan, J., Xiong, Y.J., Li, Z.Y. and Xia, Y.N. (2005) Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. Nano Letters, 5, 2058-2062.
https://doi.org/10.1021/nl051652u |
[31] | Schlücker, S. (2014) Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie International Edition, 53, 4756-4795. https://doi.org/10.1002/anie.201205748 |
[32] | Tittl, A., Mai, P., Taubert, R., Dregely, D., Liu, N. and Giessen, H. (2011) Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing. Nano Letters, 11, 4366-4369.
https://doi.org/10.1021/nl202489g |
[33] | Haes, A.J., Zou, S.L., Zhao, J., Schatz, G.C. and Van Duyne, R.P. (2006) Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances. Journal of the American Chemical Society, 128, 10905-10914.
https://doi.org/10.1021/ja063575q |
[34] | Lin, J., Wang, S.J., Huang, P., Wang, Z., Chen, S.H., Niu, G., et al. (2013) Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy. Acs Nano, 7, 5320-5329.
https://doi.org/10.1021/nn4011686 |
[35] | Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P. and Halas, N.J. (2013) Solar Vapor Generation Enabled by Nanoparticles. ACS Nano, 7, 42-49. https://doi.org/10.1021/nn304948h |
[36] | Zhou, L., Tan, Y.L., Ji, D.X., Zhu, B., Zhang, P., Xu, J., et al. (2016) Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Science Advances, 2, e1501227.
https://doi.org/10.1126/sciadv.1501227 |
[37] | Zhu, M.W., Li, Y.J., Chen, F.J., Zhu, X.Y., Dai, J.Q., Li, Y.F., et al. (2017) Plasmonic Wood for High-Efficiency Solar Steam Generation. Advanced Energy Materials, 8, Article ID: 1701028. https://doi.org/10.1002/aenm.201701028 |
[38] | Chou. L.W., Shin, N., Sivaram, S.V. and Filler, M.A. (2012) Tunable Mid-Infrared Localized Surface Plasmon Resonances in Silicon Nanowires. Journal of the American Chemical Society, 134, 16155-16158.
https://doi.org/10.1021/ja3075902 |
[39] | Chen, X., Zhu, H.Y., Zhao, J.C., Zheng, Z.F. and Gao, X.P. (2008) Visible-Light-Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie International Edition, 47, 5353-5356. https://doi.org/10.1002/anie.200800602 |
[40] | Christopher, P., Xin, H.L., Marimuthu, A. and Linic, S. (2012) Singular Characteristics and Unique Chemical Bond Activation Mechanisms of Photocatalytic Reactions on Plasmonic Nanostructures. Nature Materials, 11, 1044-1050.
https://doi.org/10.1038/nmat3454 |
[41] | Liu, G.G., Li, P., Zhao, G.X., Wang, X., Kong, J.T., Liu, H.M., et al. (2016) Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 138, 9128-9136. https://doi.org/10.1021/jacs.6b05190 |
[42] | Buonsanti, R. and Milliron, D.J. (2013) Chemistry of Doped Colloidal Nanocrystals. Chemistry of Materials, 25, 1305-1317. https://doi.org/10.1021/cm304104m |
[43] | Owen, J. (2015) The Coordination Chemistry of Nanocrystal Surfaces. Science, 347, 615-616.
https://doi.org/10.1126/science.1259924 |
[44] | Kortshagen, U.R., Sankaran, R.M., Pereira, R.N., Girshick, S.L., Wu, J.J. and Aydil, E.S. (2016) Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chemical Reviews, 116, 11061-11127.
https://doi.org/10.1021/acs.chemrev.6b00039 |
[45] | Coughlan, C., Ibá?ez, M., Dobrozhan, O., Singh, A., Cabot, A. and Ryan, K.M. (2017) Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 117, 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376 |
[46] | Mattox, T.M., Ye X.C., Manthiram, K., Schuck, P.J., Alivisatos, A.P. and Urban, J.J. (2015) Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures. Advanced Materials, 27, 5830-5837.
https://doi.org/10.1002/adma.201502218 |
[47] | Gen?, A., Patarroyo, J., Sancho-Parramon, J., Arenal, R., Duchamp, M. and Gonzalez, E.E. (2016) Tuning the Plasmonic Response Up: Hollow Cuboid Metal Nanostructures. ACS Photonics, 3, 770-779.
https://doi.org/10.1021/acsphotonics.5b00667 |
[48] | Shen, Y., Zhou, J.H., Liu, T.R., Tao, Y.T., Jiang, R.B., Liu, M.X., et al. (2013) Plasmonic Gold Mushroom Arrays with Refractive Index Sensing Figures of Merit Approaching the Theoretical Limit. Nature Communications, 4, 2381.
https://doi.org/10.1038/ncomms3381 |
[49] | Kabashin, A.V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G.A., Atkinson, R., et al. (2009) Plasmonic Nanorod Metamaterials for Biosensing. Nature Materials, 8, 867-871. https://doi.org/10.1038/nmat2546 |
[50] | Yang, H., D’Archangel, J., Sundheimer, M.L., Tucker, E., Boreman, G.D. and Raschke, M.B. (2015) Optical Dielectric Function of Silver. Physical Review B, 91, Article ID: 235137. https://doi.org/10.1103/PhysRevB.91.235137 |
[51] | Runnerstrom, E.L., Llordés, A., Lounis, S.D. and Milliron, D.J. (2014) Nanostructured Electrochromic Smart Windows: Traditional Materials and NIR-Selective Plasmonic Nanocrystals. Chemical Communications, 50, 10555-10572.
https://doi.org/10.1039/C4CC03109A |
[52] | Schimpf, A.M., Gunthardt, C.E., Rinehart, J.D., Mayer, J.M. and Gamelin, D.R. (2013) Controlling Carrier Densities in Photochemically Reduced Colloidal ZnO Nanocrystals: Size Dependence and Role of the Hole Quencher. Journal of the American Chemical Society, 135, 16569-16477. https://doi.org/10.1021/ja408030u |
[53] | Luther, J.M., Jain, P.K., Ewers, T. and Alivisatos, A.P. (2011) Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nature Materials, 10, 361-366. https://doi.org/10.1038/nmat3004 |
[54] | Dorfs, D., H?rtling, T., Miszta, K., Bigall, N.C., Kim, M.R., Genovese, A., et al. (2011) Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2?xSe Nanocrystals. Journal of the American Chemical Society, 133, 11175-11180. https://doi.org/10.1021/ja2016284 |
[55] | Cui, J.B., Li, Y.J., Liu, L., Chen, L., Xu, J., Ma, J.W., et al. (2015) Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions. Nano Letters, 15, 6295-6301.
https://doi.org/10.1021/acs.nanolett.5b00950 |
[56] | Lou, Z.Z., Gu, Q., Liao, Y.S., Yu, S.J. and Xue, C. (2016) Promoting Pd-Catalyzed Suzuki Coupling Reactions through Near-Infrared Plasmon Excitation of WO3?x Nanowires. Applied Catalysis B: Environmental, 184, 258-263.
https://doi.org/10.1016/j.apcatb.2015.11.037 |
[57] | Kung, C.W., Mondloch, J.E., Wang, T.C., Bury, W., Hoffeditz, W., Klahr, B.M., et al. (2015) Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions to Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 7, 28223-28230. https://doi.org/10.1021/acsami.5b06901 |
[58] | Mahmood, A., Guo, W.H., Tabassum, H. and Zou, R.Q. (2016) Metal-Organic Framework-Based Nanomaterials for Electrocatalysis. Advanced Energy Materials, 6, Article ID: 1600423. https://doi.org/10.1002/aenm.201600423 |
[59] | Gu, Z.Z., Chen, L.Y., Duan, B.H., Luo, Q., Liu, J. and Duan, C.Y. (2016) Synthesis of Au@UiO-66(NH2) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity. Chemical Communications, 52, 116-119. https://doi.org/10.1039/C5CC07042B |
[60] | Xiao, J.D., Han, L.L, Luo, J., Yu, S.H. and Jiang, H.L. (2018) Integration of Plasmonic Effects and Schottky Junctions into Metal-Organic Framework Composites: Steering Charge Flow for Enhanced Visible-Light Photocatalysis. Angewandte Chemie International Edition, 57, 1103-1107. https://doi.org/10.1002/anie.201711725 |