全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pythagoreans Figurative Numbers: The Beginning of Number Theory and Summation of Series

DOI: 10.4236/jamp.2021.98132, PP. 2038-2113

Keywords: Figurative Numbers, Patterns and Properties, Relations, Sums of Finite and Infinite Series, History

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their computation through simple recurrence relations, patterns and properties, and mutual relationships which have led to curious results in the field of elementary number theory. Further, for each type of figurative numbers we shall show that the addition of first finite numbers and infinite addition of their inverses often require new/strange techniques. We sincerely hope that besides experts, students and teachers of mathematics will also be benefited with this article.

References

[1]  Ladyzhenskaya, O. (1926) Nicomachus of Geraza. Introduction to Arithmetic, Martin Luther D’Ooge Trans., Macmillan Education, London.
[2]  Ross, H.E. and Knott, B.I. (2019) Dicuil (9th Century) on Triangular and Square Numbers. British Journal for the History of Mathematics, 34, 79-94.
https://doi.org/10.1080/26375451.2019.1598687
[3]  Deza, E. and Deza, M. (2011) Figurative Numbers. World Scientific, Singapore, 476 p.
https://doi.org/10.1142/8188
[4]  Alsina, C. and Nelsen, R.B. (2006) Math Made Visual: Creating Images for Understanding Mathematics. The Mathematical Association of America, 28.
https://doi.org/10.5948/UPO9781614441007
[5]  Agarwal, R.P. and Sen, S.K. (2014) Creators of Mathematical and Computational Sciences. SpringerVerlag, New York.
https://doi.org/10.1007/978-3-319-10870-4
[6]  Bell, E.T. (1946) The Magic of Numbers. Dover Publications, New York.
[7]  Fearnehough, A. (2012) Triangular Numbers. Resonance, 17, 672-681.
https://doi.org/10.1007/s12045-012-0074-z
[8]  Guy, R.K. (1994) Unsolved Problems in Number Theory. 2nd Edition, Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4899-3585-4
[9]  Trigg, C.W. (1974) Infinite Sequences of Palindromic Triangular Numbers. Journal of Recreational Mathematics, 7, 209-221.
[10]  Sloane, N.J.A. and Plouffe, S. (2019) The Encyclopedia of Integer Sequences. Academic Press, San Diego.
[11]  Davis, H.T. (1962) The Summation of Series. Principia Press, Michigan.
[12]  Lesko, J. (2004) Sums of Harmonictype Sums. The College Mathematics Journal, 35, 171-182.
https://doi.org/10.1080/07468342.2004.11922070
[13]  Agarwal, R.P. (2020) Pythagorean Theorem before and after Pythagoras. Advanced Studies in Contemporary Mathematics, 30, 357-389.
[14]  Agarwal, R.P. (2020) Pythagorean Triples before and after Pythagoras. Computation, 8, 36-62.
https://doi.org/10.3390/computation8030062
[15]  Beauregard, R.A. and Suryanarayan, E.R. (2000) Parametric Representation of Primitive Pythagorean Triples. Mathematics Magazine, 69, 189.
[16]  Agarwal, R.P. (2000) Difference Equations and Inequalities. 2nd Edition, Marcel Dekker, New York.
[17]  Agarwal, R.P. and Agarwal, H. (2021) Origin of Irrational Numbers and Their Approximations. Computation, 9, 29-49.
https://doi.org/10.3390/computation9030029
[18]  Pietenpol, J.L., Sylwester, A.V., Just, E. and Warten, R.M. (1962) Elementary Problems and Solutions: E 1473, Square Triangular Numbers, American Mathematical Monthly. Mathematical Association of America, 69, 168-169.
https://doi.org/10.2307/2312558
[19]  Burton, D.M. (2002) Elementary Number Theory. 5th Edition, McGraw Hill, New York.
[20]  Mihăilescu, P. (2004) Primary Cyclotomic Units and a Proof of Catalan’s Conjecture. Journal Für Die Reineund Angewandte Mathematik, 572, 167-195.
https://doi.org/10.1515/crll.2004.048
[21]  Bennett, M.A. (2001) Rational Approximation to Algebraic Numbers of Small Height: The Diophantine Equation |axn – byn| = 1. Journal Für Die Reine und Angewandte Mathematik, 535, 1-49.
https://doi.org/10.1515/crll.2001.044
[22]  Plouffe, S. (1992) 1031 Generating Functions, University of Quebec, Laboratoire de Combinatoire et d’Informatique Mathmatique, Quebec.
[23]  Ram Murty, M. (2019) A Simple Proof That ζ(2) = π2/6. The Mathematics Student, 88, 113-115.
[24]  Ma, D.G. (1985) An Elementary Proof of the Solutions to the Diophantine Equation 6y2 = x(x +1)(2x +1). Journal of Sichuan University, 4, 107-116.
[25]  Anglin, W.S. (1990) The Square Pyramid Puzzle. American Mathematical Monthly, 97, 120-124.
https://doi.org/10.1080/00029890.1990.11995558
[26]  Luo, M. (1989) On Triangular Fibonacci Numbers. The Fibonacci Quarterly, 27, 98-108.
[27]  Andrews, G.E., Askey, R. and Roy, R. (1999) Special Functions. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781107325937
[28]  Efthimiou, C.J. (1999) Finding Exact Values for Infinite Series. Mathematics Magazine, 72, 45-51.
https://doi.org/10.1080/0025570X.1999.11996698
[29]  Downey, L. (2008) Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers. World Scientific, Preprint.
[30]  Conway, J.H. and Guy, R.K. (1996) The Book of Numbers. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-4072-3
[31]  Meyl, A.J.J. (1878) Solution de Question 1194. Nouvelles Annales de Mathématiques, 17, 464-467.
https://doi.org/10.1038/017464a0
[32]  Fearnehough, A. (2006) 90.67 A Series for the “Bit”. The Mathematical Gazette, 90, 460-461.
https://doi.org/10.1017/S0025557200180337
[33]  Brady, Z.E. (2016) Sums of Seven Octahedral Numbers. Journal of the London Mathematical Society, 535, 1-49.
https://doi.org/10.1112/jlms/jdv061
[34]  Elkies, N.D. (1988) On A4 + B4 + C4 = D4. Mathematics of Computation, 51, 825-835.
https://doi.org/10.2307/2008781
[35]  Duke, W. (1997) Some Old Problems and New Results about Quadratic Forms. Notices of the American Mathematical Society, 44, 190-196.
[36]  Grosswald, E. (1985) Representations of Integers as Sums of Squares. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4613-8566-0
[37]  Ewell, J.A. (1992) On Sums of Triangular Numbers and Sums of Squares. The American Mathematical Monthly, 99, 752-757.
https://doi.org/10.1080/00029890.1992.11995924
[38]  Ewell, J.A. (1992) On Representations of Numbers by Sums of Two Triangular Numbers. The Fibonacci Quarterly, 30, 175-178.
[39]  Guy, R.K. (1994) Every Number Is Expressible as a Sum of How Many Polygonal Numbers. The American Mathematical Monthly, 101, 169-172.
https://doi.org/10.1080/00029890.1994.11996925

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133