All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Effect of the Orientation on the Comfort of a Building Made with Compressed Earth Block

DOI: 10.4236/sgre.2021.127007, PP. 99-112

Keywords: Thermal Comfort, Building Optimal Orientation, Thermal Amplitude, Thermal Phase Shift, Energy Consumption, Optimal Orientation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thermal comfort is one of the most important requirements that scientists and building designers must meet to ensure the indoor air quality knowing its importance on productivity and the health of occupants. However, it has never been of great concern for architects and architectural historians and seldom explores it. Buildings are the large consumer of the most energy consumption (around 40% worldwide) and generate around 35% of GHGs like CO2 that leads to extreme climate change. Hence, general and specific eco-friendly solutions in the field of building construction are required. Analysis of this study shows that air conditioning consumption can be significantly reduced thanks to the compressed earth bricks and by taking into account the climate and the orientation of the facades. However, this paper establishes viable low-cost option of building energy consumption while maintaining the thermal comfort and good indoor air quality. This work explains the effect of a single residential room orientation, by reducing the thermal amplitude, and improving the thermal phase shift in Ouagadougou climate conditions in April. Internal temperature was modelled with 8 cardinal orientations. The result corresponds to a decrease of thermal amplitude damping greater than 4°C between East-West and North-South sides and, with a thermal phase shift of 4 hours 30 minutes between the Nord and West walls.

References

[1]  Cordier, N. (2007) Developpement et evaluation de strategies de controle de ventilation appliquees aux locaux de grandes dimensions. Thèse de Doctorat, Ecole Nationale des Travaux Publics de l’Etat, Lyon.
[2]  Hoppe, P. (2002) Different Aspects of Assessing Indoor and Outdoor Thermal Comfort. Energy Build, 34, 661-665.
https://doi.org/10.1016/S0378-7788(02)00017-8
[3]  Fati, A.O., Abdou Latif, B., Souleymane, O., Ky, S.M.T., Lewamy, M. and Joseph, B.D. (2020) The Impact of Local Materials on the Improvement of the Thermal Comfort in Building. Current Journal of Applied Science and Technology, 39, 22-35.
https://doi.org/10.9734/cjast/2020/v39i1530713
[4]  Zhang, W., Liu, F. and Fan, R. (2018) Improved Thermal Comfort Modeling for Smart Buildings: A Data Analytics Study. International Journal of Electrical Power & Energy Systems, 103, 634-643.
https://doi.org/10.1016/j.ijepes.2018.06.026
[5]  Mosqueron, L. and Nedellec, V. (2001) Inventaire des données francaises sur la qualité de l’air à l’intérieur des batiments. Rue du Gén. Observatoire De La Qualité De L‘Air Intérieur, Paris.
[6]  Hema, C., Messan, A., Lawane, A., Soro, D., Nshimiyimana, P. and Van Moeseke, G. (2021) Improving the Thermal Comfort in Hot Region through the Design of Walls Made of Compressed Earth Blocks: An Experimental Investigation. Journal of Building Engineering, 38, Article ID: 102148.
https://doi.org/10.1016/j.jobe.2021.102148
[7]  Yu, J., Yang, C., Tian, L. and Liao, D. (2009) Evaluation on Energy and Thermal Performance for Residential Envelopes in Hot Summer and Cold Winter Zone of China. Applied Energy, 86, 1970-1985.
https://doi.org/10.1016/j.apenergy.2009.01.012
[8]  Pérez-Lombard, L., Ortiz, J. and Pout, C. (2008) A Review on Buildings Energy Consumption Information. Energy and Buildings, 40, 394-398.
https://doi.org/10.1016/j.enbuild.2007.03.007
[9]  Omrani, S., Garcia-Hansen, V., Capra, B. and Drogemuller, R. (2017) Natural Ventilation in Multi-Storey Buildings: Design Process and Review of Evaluation Tools. Building and Environment, 116, 182-194.
https://doi.org/10.1016/j.buildenv.2017.02.012
[10]  Abuseif, M. and Gou, Z. (2018) A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness. Energies, 11, Article No. 3196.
https://doi.org/10.3390/en11113196
[11]  Bonkaney, A., Madougou, S. and Adamou, R. (2017) Impacts of Cloud Cover and Dust on the Performance of Photovoltaic Module in Niamey. Journal of Renewable Energy, 2017, Article ID: 9107502.
https://doi.org/10.1155/2017/9107502
[12]  Ashmawy, R.E. and Azmy, N.Y. (2018) Buildings Orientation and its Impact on the Energy Consumption. Academic Research Community Publication, 2, 35-49.
https://doi.org/10.21625/archive.v2i3.344
[13]  Fati, A.O., Souleymane, O., Adrien, S., Amadou, K., Adama, O., Salifou, O., et al. (2021) Influences of Local Materials on the Building Behavior and Evaluation of the Cooling Loads. Journal de Physique de la SOAPHYS, 2, C20A19-1-C20A19-7.
https://doi.org/10.46411/jpsoaphys.2020.02.19
[14]  Hameed, P., Bin, N., Nor, M., Nallagownden, P., Elamvazuthi, I. and Ibrahim, T. (2016) Intelligent Multi-Objective Control and Management for Smart Energy Efficient Buildings. International Journal of Electrical Power & Energy Systems, 74, 403-409.
https://doi.org/10.1016/j.ijepes.2015.08.006
[15]  Amadou Oumarou, F., Ramchandra, B., Mamadou, L., Ky, S.M.T., Ouedraogo, S., Rabani, A., Compaoré, A. and Bathiebo, D.J. (2020) Determination and Evaluation of the Cooling Load of a Building Made by Different Local Material of Construction. IRA-International Journal of Applied Sciences, 15, 1-14.
https://doi.org/10.21013/jas.v15.n5.p1
[16]  Mirrahimi, S., Mohamed, M.F., Haw, L.C., Ibrahim, N.L.N., Yusoff, W.F.M. and Aflaki, A. (2016) The Effect of Building Envelope on the Thermal Comfort and Energy Saving for High-Rise Buildings in Hot-Humid Climate. Renewable and Sustainable Energy Reviews, 53, 1508-1519.
https://doi.org/10.1016/j.rser.2015.09.055
[17]  Fanger (1977) Thermal Analysis—HumaN Comfort—Indoor Environment. NBS Special Publication 491. NBS, Lyngby, 3-17.
[18]  Berghout, B., Forgues, D. and Monfet, D. (2014) Simulation du confort thermique intérieur pour l’orientation d‘un batiment collectif à Biskra, Algérie. eSIM 2014 Conference Proceedings, Ottawa, 8-9 May 2014, 14.
[19]  Fernandez, P. and Lavigne, P. (2009) Concevoir des batiments bioclimatiques: Fondements et méthodes. Ed.le Moni, Paris.
[20]  Samira, L. and Abdou, S. (2010) Impact de l’orientation sur le confort thermique interieur dans l’habitation collective. Sciences & Technologie D, No. 32, 33-40.
[21]  Bellara Louafi, S. and Abdou, S. (2009) Impact de l’orientation sur le confort thermique interieur dans l’habitation collective: Cas de la nouvelle ville Ali Mendjeli de Constantine. Sciences & Technologie A, No. 29, 61-68.
[22]  Guermia, B. and Fatiha, B. (2010) L’impact de l’orientation des parois transparentes sur le confort thermique dans une salle de classe a constantine. Sciences & technologie D, No. 31, 71-80.
[23]  Al-Obaidi, M.A.A.H. and Woods, P. (2006) Investigations on Effect of the Orientation on Thermal Comfort in Terraced Housing in Malaysia. International Journal of Low-Carbon Technologies, 1, 167-176.
https://doi.org/10.1093/ijlct/1.2.167
[24]  Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006) World Map of the Koppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift, 15, 259-263.
https://doi.org/10.1127/0941-2948/2006/0130
[25]  Kaboré, M. (2015) Enjeux de la simulation pour l‘étude des performances énergétiques des batiments en Afrique sub-saharienne. Université Grenoble Alpes.
[26]  Chang, J.H. (2016) Thermal Comfort and Climatic Design in the Tropics: An Historical Critique. The Journal of Architecture, 21, 1171-1202.
https://doi.org/10.1080/13602365.2016.1255907
[27]  Kabore, B., Kam, S.I.E., Wende, G., Ouedraogo, P. and Bathiebo, D.J. (2018) Etude de l’évolution climatique au Burkina Faso de 1983 à 2012: Cas des villes de Bobo Dioulasso, Ouagadougou et Dori. Arabian Journal of Geosciences, 4, 50-59.
[28]  Gerlich, V. (2011) Modelling of Heat Transfer in Buildings. 25th European Conference on Modelling and Simulation, ECMS 2011, Krakow, 7-10 June 2011, 244-248.
https://doi.org/10.7148/2011-0244-0248
[29]  Compaoré, A. (2018) Etude des performances thermiques d’un habitat type du Burkina Faso. Application: Contribution à la mise en place d’une règlementation thermique. Université Ouaga I Professeur JOSEPH KI-ZERBO, Ouagadougou.
[30]  Compaore, A., Ouedraogo, B., Guengane, H., Malbila, E. and Bathiebo, D.J. (2017) Role of Local Building Materials on the Energy Behaviour of Habitats in Ouagadougou. IRA-International Journal of Applied Sciences, 8, 63-72.
https://doi.org/10.21013/jas.v8.n2.p3
[31]  Charvátová, H., Procházka, A. and Zálesák, M. (2018) Computer Simulation of Temperature Distribution during Cooling of the Thermally Insulated Room. Energies, 11, Article No. 3025.
https://doi.org/10.3390/en11113205

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133