全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯纳米复合材料在电化学检测中的应用
Application of Graphene Nanocomposite in the Electrochemical Detection

DOI: 10.12677/AAC.2021.113017, PP. 153-160

Keywords: 电化学传感器,石墨烯,纳米复合材料
Electrochemical Sensor
, Graphene, Nanocomposite

Full-Text   Cite this paper   Add to My Lib

Abstract:

电化学传感器操作简单、制作方便、灵敏度高、检测限低,在生物技术、临床检测、医药工业等领域具有重要的研究前景。石墨烯纳米复合材料是由石墨烯与一些活性材料特异结合形成的新型材料。因其具有小尺寸效应且大表面积、优异的电催化活性以及将不同功能的材料整合成良好的整体并表现协同效应的优点,被广泛应用于电化学传感器研究。石墨烯纳米复合材料所制备的电化学传感器也为研究物质的化学本质提供了重要的信息。本文简要介绍了石墨烯纳米复合材料电化学传感器的分类、发展史和在实际样品检测中的应用,综述了近年来各类石墨烯纳米复合材料在电化学传感器方面的研究进展。
The electrochemical sensor has the advantages of simple operation, easy manufacture, high sensitivity and low detection limit. It has an important research prospect in the fields of biotechnology, clinical detection and the pharmaceutical industry. Graphene nanocomposite is a new type of material formed by the specific combination of graphene and some active materials.Due to its small size effect, large specific surface area and excellent electrocatalytic activity, grapheme nanocomposite can also form a good whole with integrated materials with different functions, showing the advantage of synergistic effect, so they are widely used in the research of electrochemical sensors. The electrochemical sensor prepared by grapheme nanocomposite materials also provides important information for studying the chemical nature of substances. In this paper, the classification, development history and application of grapheme nanocomposite electrochemical sensors in biological sample detection are briefly introduced, and the research progress of various grapheme nanocomposite electrochemical sensors in recent years is summarized.

References

[1]  布莱恩R. 埃金斯. 化学传感器与生物传感器[M]. 北京: 化学工业出版社, 2005.
[2]  Miao, P. and Tang, Y. G. (2020) Cascade Toehold-Mediated Strand Displacement Reaction for Ultrasensitive Detection of Exosomal MicroRNA. CCS Chemistry, 2, 2331-2339.
https://doi.org/10.31635/ccschem.020.202000458
[3]  张立德, 牟季美. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2001.
[4]  Han, D., Han, T., Shan, C., et al. (2010) Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode. Electroanalysis, 22, 2001-2008.
https://doi.org/10.1002/elan.201000094
[5]  Novoselov, K.S. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[6]  Sattar, T. (2019) Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Topics in Current Chemistry, 377, 10.
https://doi.org/10.1007/s41061-019-0235-6
[7]  高春华. 纳米材料的基本效应及其应用[J]. 江苏理工大学学报(自然科学版), 2001, 22(6): 47-51.
[8]  Dong, P.Y., Wang, Y.H., Guo, L.N., et al. (2012) A Facile One-Step Solvothermal Synthesis of Graphene/Rod-Shaped TiO2Nanocomposite and Its Improved Photocatalytic Activity. Nanoscale, 4, 4641-4649.
https://doi.org/10.1039/c2nr31231j
[9]  Jin, X., Adpakpang, K., Kim, I.Y., et al. (2015) An Effective Way to Optimize the Functionality of Graphene-Based Nanocomposite: Use of the Colloidal Mixture of Graphene and Inorganic Nanosheets. Scientific Reports, 4, Article ID: 11057.
https://doi.org/10.1038/srep11057
[10]  Cho, S., Lee, J.S., Jun, J., et al. (2014) Fabrication of Water-Dispersible and Highly Conductive PSS-Doped PANI/Graphene Nanocomposites Using a High-Molecular Weight PSS Dopant and Their Application in H2S Detection. Nanoscale, 6, 15181-15195.
https://doi.org/10.1039/C4NR04413D
[11]  Fan, Y.F., Zhang, X.D., Liu, Y.S, et al. (2013) One-Pot Hydrothermal Synthesis of Mn3O4/Grapheme Nanocomposite for Supercapacitors. Materials Letters, 95, 153-156.
https://doi.org/10.1016/j.matlet.2012.12.110
[12]  Aparna, T.K., Sivasubramanian, R. and Dar, M.A. (2018) One-Pot Synthesis of Au-Cu2O/RGO Nanocomposite Based Electrochemical Sensor for Selective and Simultaneous Detection of Dopamine and Uric Acid. Journal of Alloys and Compounds, 741, 1130-1141.
https://doi.org/10.1016/j.jallcom.2018.01.205
[13]  Zhang, H.Y. and Liu, S. (2017) Nanoparticles-Assembled NiO Nanosheets Templated by Graphene Oxide Film for Highly Sensitive Non-Enzymatic Glucose Sensing. Sensors and Actuators B-Chemical, 238, 788-794.
https://doi.org/10.1016/j.snb.2016.07.126
[14]  Zhang, Y.Q., Wang, Y.Z, Jia, J.B., et al. (2012) Nonenzymatic Glucose Sensor Based on Graphene Oxide and Electrospun NiO Nanofibers. Sensors and Actuators B-Chemical, 171, 580-587.
https://doi.org/10.1016/j.snb.2012.05.037
[15]  Das, T.K. and Prusty, S. (2012) Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 51, 1487-1500.
https://doi.org/10.1080/03602559.2012.710697
[16]  Yan, J., Wei, T., Shao, B., et al. (2010) Preparation of a Graphene Nanosheet/Polyaniline Composite with High Specific Capacitance. Carbon, 48, 487-493.
https://doi.org/10.1016/j.carbon.2009.09.066
[17]  Xu, L.Q., Liu, Y.L., Neoh, K.G., et al. (2011) Reduction of Graphene Oxide by Aniline with Its Concomitant Oxidative Polymerization. Macromolecular Rapid Communications, 32, 684-688.
https://doi.org/10.1002/marc.201000765
[18]  Wang, H., Hao, Q., Yang, X., et al. (2010) Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. ACS Applied Materials & Interfaces, 2, 821-828.
https://doi.org/10.1021/am900588s
[19]  Jin, X.Y., Gu, T.H., Kwon, N.H., et al. (2021) Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. Advanced Materials, Article ID: 2005922.
https://doi.org/10.1002/adma.202005922
[20]  刘春英, 柳云骐, 张珂, 等. 溶胶-凝胶法合成钛酸锂及石墨烯的掺杂改性[J]. 电源技术, 2013, 37(1): 28-31.
[21]  Ma, Z.Y., Zhou, X.F., Deng, W., et al. (2018)3D Porous MXene (Ti3C2)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. ACS Applied Materials & Interfaces, 10, 3634-3643.
https://doi.org/10.1021/acsami.7b17386
[22]  ?nal, A. (2011) Overview on Liquid Chromatographic Analysis of Tetracycline Residues in Food Matrices. Food Chemistry, 127, 197-203.
https://doi.org/10.1016/j.foodchem.2011.01.002
[23]  O’Grady, J., Ruttledge, M., Sedano-Balbás, S., et al. (2009) Rapid Detection of Listeria Monocytogenes in Food Using Culture Enrichment Combined with Real-Time PCR. Food Microbiology, 26, 4-7.
https://doi.org/10.1016/j.fm.2008.08.009
[24]  Asensio, L., González, I., García, T., et al. (2008) Determination of Food Authenticity by Enzyme-Linked Immunosorbent Assay (ELISA). Food Control, 19, 1-8.
https://doi.org/10.1016/j.foodcont.2007.02.010
[25]  Guo, X.C. (2017) One Step Electrodeposition of Graphene-Au Nanocomposites for Highly Sensitive Electrochemical Detection of Salbutamol. International Journal of Electrochemical Science, 2017, 861-875.
https://doi.org/10.20964/2017.02.29
[26]  Zhang, L.Y., Liu, X., Luo, L.Y., et al. (2021) A High-Performance Voltammetric Methodology for the Ultra-Sensitive Detection of Riboflavin in Food Matrices Based on Graphene Oxide-Covered Hollow MnO2 Spheres. Food Chemistry, 352, Article ID: 129368.
https://doi.org/10.1016/j.foodchem.2021.129368
[27]  Lu, L. (2018) Recent Advances in Synthesis of Three-Dimensional Porous Graphene and Its Applications in Construction of Electrochemical (Bio)Sensors for Small Biomolecules Detection. Biosensors and Bioelectronics, 110, 180-192.
https://doi.org/10.1016/j.bios.2018.03.060
[28]  Zhao, J., Gao, F., Fu, Y., et al. (2002) Biomolecule Separation Using Large Pore Mesoporous SBA-15 as a Substrate in High Performance Liquid Chromatography. Chemical Communications, 2002, 752-753.
https://doi.org/10.1039/b110637f
[29]  Chen, X., Chen, J., Wang, F., et al. (2012) Determination of Glucose and Uric Acid with Bienzyme Colorimetry on Microfluidic Paper-Based Analysis Devices. Biosensors and Bioelectronics, 35, 363-368.
https://doi.org/10.1016/j.bios.2012.03.018
[30]  Yang, Y.J., Li, W. and Wu, X. (2014) Copper Sulfide Reduced Graphene Oxide Nanocomposite for Detection of Hydrazine and Hydrogen Peroxide at Low Potential in Neutral Medium. Electrochimica Acta, 123, 260-267.
https://doi.org/10.1016/j.electacta.2014.01.046
[31]  Xu, J., Cao, X., Xia, J., et al. (2016) Phosphomolybdic Acid Functionalized Graphene Loading Copper Nanoparticles Modified Electrodes for Non-Enzymatic Electrochemical Sensing of Glucose. Analytica Chimica Acta, 934, 44.
https://doi.org/10.1016/j.aca.2016.06.033
[32]  Liu, B., Ouyang, X., Ding, Y., et al. (2016) Electrochemical Preparation of Nickel and Copper Oxides-Decorated Graphene Composite for Simultaneous Determination of Dopamine, Acetaminophen and Tryptophan. Talanta, 146, 114-121.
https://doi.org/10.1016/j.talanta.2015.08.034
[33]  陈刚. 原子吸收光谱法测定水样中铝的含量[J]. 建筑工程技术与设计, 2015(15): 1878.
[34]  Caroli, S., Forte, G., Lamiceli, A.L., et al. (1999) Determination of Essential and Potentially Toxic Trace Elements in Honey by Inductively Coupled Plasma-Based Techniques. Talanta, 50, 327-336.
https://doi.org/10.1016/S0039-9140(99)00025-9
[35]  刘娜娜, 魏俊富, 王会才, 刘凯, 于水娟. 阴离子纤维微柱-紫外分光光度法快速富集检测水中痕量Cr(VI) [J]. 离子交换与吸附, 2015, 31(2): 131-141.
[36]  Borthakur, P., Darabdhara, G., Das, M.R., et al. (2017) Solvothermal Synthesis of CoS/Reduced Porous Graphene Oxide Nanocomposite for Selective Colorimetric Detection of Hg(II) Ion in Aqueous Medium. Sensors and Actuators B-Chemical, 244, 684-692.
https://doi.org/10.1016/j.snb.2016.12.148
[37]  Xie, Y.L., Zhao, S.Q., Ye, H.L., et al. (2015) Graphene/CeO2 Hybrid Materials for the Simultaneous Electrochemical Detection of Cadmium(II), Lead (II), Copper(II), And Mercury(II). Journal of Electroanalytical Chemistry, 757, 235-242.
https://doi.org/10.1016/j.jelechem.2015.09.043
[38]  刘艳, 傅英姿, 牛卫芬. 电化学免疫传感器中生物活性物质的固定方法研究进展[J]. 河南师范大学学报(自然科学版), 2011, 39(4): 97-100.
[39]  Cong, C., Bian, K.X., Zhang, X.W., et al. (2020) Sensitive Measurement of Tumor Markers Somatostatin Receptors Using an Octreotide-Directed Pt Nano-Flakes Driven Electrochemical Sensor. Talanta, 208, Article ID: 120286.
https://doi.org/10.1016/j.talanta.2019.120286
[40]  Wu, Z.Y., Chen, J.Y., Zhu, X., et al. (2018) Sensitive Electrochemical Cytosensor for Highly Specific Detection of Osteosarcoma 143B Cells Based on Graphene-3D Gold Nanocomposites. Journal of Electroanalytical Chemistry, 824, 108-113.
https://doi.org/10.1016/j.jelechem.2018.07.034
[41]  Li, Y. and Yu, C. (2016) One-Step Electrosynthesis of Graphene Oxide-Doped PolypyrroleNanocomposite as a Nanointerface for Electrochemical Impedance Detection of Cell Adhesion and Proliferation Using Two Approaches. Journal of Nanomaterials, 2016, Article ID: 8932908.
https://doi.org/10.1155/2016/8932908

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133