|
底播虾夷扇贝(Patinopecten yessoensis)肠道可培养细菌动态分析
|
Abstract:
本研究旨在研究底播虾夷扇贝肠道微生物多样性及其动态变化,并分离潜在益生菌应用于虾夷扇贝幼体培育。实验用底播虾夷扇贝于2014年12月份底播,分别于2015年1月、4月和7月进行样品采集。以2216E培养基对肠道细菌进行分离、纯化,提取DNA并通过16S rDNA测序对分离的细菌进行鉴定。结果表明所有可培养细菌属于变形菌门、厚壁菌门和放线菌门,其中变形菌门占比78.9%,占绝对优势。属水平上,肠道分离可培养细菌隶属于弧菌属Vibrio,Aliivibrio,希瓦氏菌属Shewanella,科迪单胞菌Kordiimonas,假交替单胞菌属Pseudoalteromonas,假单胞菌属Pseudomonas,气单胞菌属Aeromonas,海洋居住菌属Pelagicola,黑杆菌属Phaeobacter,沈氏菌属Shimia,噬琼胶菌属Agarivorans,噬冷杆菌属Psychrobacter,海单胞菌属Marinomonas,克鲁维菌属Kluyvera,芽孢杆菌属Bacillus,漫游球菌属Vagococcus,香味菌属Myroides,黄杆菌属Tenacibaculum和微球菌属Micrococcus。从多样性指数分析看,1月(4.24)和4月(4.28)的Shannon多样性指数高于7月(3.96)。1月、4月和7月的Pielou指数分别为0.97、0.97和0.95,说明三个采样日的物种分布较为均匀。Bray-Curtis和S?rensen相似性指数显示,7月份肠道微生物菌群与1月和4月份相似性较低(分别为0.27和0.23),随着底播时间和季节转化,底播虾夷扇贝肠道微生物变化较大,尤其夏季(7月份)与春季(4月份)和冬季(1月份)差异较大。
The aim of the study was to examine the bacterial community associated with the intestine of Yesso scallop (Patinopecten yessoensis), and to isolate potential probiotics for juvenile culture of Yesso scallop. The scallops were bottom sowing in December 2014 and samples were collected in January, April and July 2015. Polymerase chain reaction and partial 16S rDNA sequencing were performed on DNA from bacteria cultivated on Zobell 2216E medium. The results showed that all the isolates were classified into Proteobacteria, Firmicutes and Actinobacteria, with the dominant Phylum of culturable intestinal microbiota being Proteobacteria (78.9%). At the genus level, Vibrio, Aliivibrio, Shewanella, Kordiimonas, Pseudoalteromonas, Pseudomonas, Aeromonas, Pelagicola, Phaeobacter, Shimia, Agarivorans, Psychrobacter, Marinomonas, Kluyvera, Bacillus, Vagococcus, Myroides, Tenacibaculum and Micrococcus were isolated from the intestine. Shannon diversity index in January (4.24) and April (4.28) was higher than that in July (3.96). The Pielou index in January, April and July was 0.97, 0.97 and 0.95, respectively, indicating that the distribution of species on the three sampling days was relatively uniform. The similarity index of Bray-Curtis and S?rensen showed that the intestinal microflora in July was less similar to that in January and April (0.27 and 0.23, respectively), and the intestinal microflora of scallop was significantly changed with the time and seasonal transformation of bottom Sowing. In particular, summer (July) is different from spring (April) and winter (January).
[1] | 王颖, 周露. 我国虾夷扇贝底播增殖产量影响因素研究——以獐子岛为例[J]. 中国渔业经济, 2014, 32(1): 104-109. |
[2] | Liu, J.C., Sun, X.Y., Li, M., Zhang, C., Cao, S. and Ma, Y. (2015) Vibrio Infections Associated with Yesso Scallop (Patinopecten yessoensis) Larval Culture. Journal of Shellfish Research, 34, 213-216.
https://doi.org/10.2983/035.034.0202 |
[3] | 滕炜鸣, 李文姬, 张明, 于佐安, 李石磊, 刘项峰, 等. 虾夷扇贝脓胞病病原的分离、鉴定与致病性[J]. 水产学报, 2012, 36(6): 937-943. |
[4] | Harris, J.M. (1993) The Presence, Nature, and Role of Gut Microflora in Aquatic Invertebrates: A Synthesis. Microbial Ecology, 25, 195-231. https://doi.org/10.1007/BF00171889 |
[5] | Austin, B. (2006) The Bacterial Microflora of Fish, Revised. Scientific World Journal, 6, Article ID: 325830.
https://doi.org/10.1100/tsw.2006.181 |
[6] | Gómez, G.D. and Balcázar, J.L. (2008) A Review on the Interactions between Gut Microbiota and Innate Immunity of Fish. Fems Immunology and Medical Microbiology, 2, 145-154. https://doi.org/10.1111/j.1574-695X.2007.00343.x |
[7] | Alldredge, A.L. and Gotschalk, C.C. (1989) Direct Observations of the Mass Flocculation of Diatom Blooms: Characteristics, Settling Velocities and Formation of Diatom Aggregates. Deep Sea Research Part A: Oceanographic Research Papers, 36, 159-171. https://doi.org/10.1016/0198-0149(89)90131-3 |
[8] | Passow, U.A. and Alldredge, A.L. (1994) Distribution, Size and Bacterial Colonization of Transparent Exopolymer Particles (TEP) in the Ocean. Marine Ecology Progress Series, 113, 185-198. https://doi.org/10.3354/meps113185 |
[9] | Luczkovich, J.J. and Stellwag, E.J. (1993) Isolation of Cellulolytic Microbes from the Intestinal Tract of the Pinfish, Lagodon rhomboides: Size-Related Changes in Diet and Microbial Abundance. Marine Biology, 116, 381-388.
https://doi.org/10.1007/BF00350054 |
[10] | Liu, Z.M., Ma, Y.X., Yang, Z.P., Li, M., Liu, J. and Bao, P.-Y. (2012) Immune Responses and Disease Resistance of the Juvenilesea Cucumber Apostichopus japonicus Induced by Metschnikowia sp. C14. Aquaculture, 368-369, 10-18.
https://doi.org/10.1016/j.aquaculture.2012.09.009 |
[11] | Tamura, K.L., Dudley, M. and Nei, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24, 1596-1599. https://doi.org/10.1093/molbev/msm092 |
[12] | Shannon, C.E. (1948) A mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x |
[13] | Pielou, E.C. (1966) The Measurement of Diversity in Different Types of Biological Collections. Journal of Theoretical Biology, 13, 131-144. https://doi.org/10.1016/0022-5193(66)90013-0 |
[14] | Bray, J.R. and Curtis, J.T. (1957) An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27, 325-349. https://doi.org/10.2307/1942268 |
[15] | Sorensen, T. (1948) A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content, and Its Application to Analyses of the Vegetation on Danish Commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1-34. |
[16] | Kim, D.H., Brunt, J. and Austin, B. (2007) Microbial Diversity of Intestinal Contents and Mucus in Rainbow Trout (Oncorhynchus mykiss). Journal of Applied Microbiology, 102, 1654-1664.
https://doi.org/10.1111/j.1365-2672.2006.03185.x |
[17] | 杨彩霞, 李赟, 张婧宇, 王崇明. 栉孔扇贝消化盲囊细菌群落组成的季节变化分析[J]. 水产学报, 2012, 36(10): 1579-1584. |
[18] | 丁君, 窦妍, 徐高蓉, 王轶南, 常亚青. 基于454焦磷酸测序分析虾夷扇贝外套膜菌群多样性[J]. 应用生态学报, 2014, 25(11): 3344-3348. |
[19] | 宋庆云, 罗挽涛, 王文兴, 薛清刚. 扇贝的养殖环境及其体内的细菌学分析[J]. 黄渤海海洋, 1997, No. 3, 26-30. |
[20] | Schulze, A.D., Alabi, A.O., Tattersall-Sheldrake, A.R. and Miller, K.M. (2006) Bacterial Diversity in a Marine Hatchery: Balance between Pathogenic and Potentially Probiotic Bacterial Strains. Aquaculture, 256, 50-73.
https://doi.org/10.1016/j.aquaculture.2006.02.008 |
[21] | Gibson, L.F., Woodworth, J., George, A.M. (1998) Probiotic Activity of Aeromonas Media on the Pacific Oyster, Crassostrea gigas, When Challenged with Vibrio tubiashii. Aquaculture, 169, 111-120.
https://doi.org/10.1016/S0044-8486(98)00369-X |
[22] | Avenda?o, R. and Riquelme, C. (1999) Establishment of Mixed-Culture Probiotics and Microalgae as Food for Bivalve Larvae. Aquaculture Research, 30, 893-900. https://doi.org/10.1046/j.1365-2109.1999.00420.x |
[23] | Doeschate, K.I. and Coyne, V.E. (2008) Improved Growth Rate in Farmed Haliotis midae through Probiotic Treatment. Aquaculture, 284, 174-179. https://doi.org/10.1016/j.aquaculture.2008.07.018 |