|
基于优化灰色模型算法的能源需求预测分析与应用
|
Abstract:
在信息化数字化的大环境下,实现能源管理系统的在线监测办法无形中成为了企业能源管理最基础的措施。而系统中的能源需求预测功能为企业的节能降耗提供最有力的数据支撑。为提高预测准确率,本文提出了一种改进的多维灰色模型能源预测算法,先使用指数加权方式进行源特征数据处理增加趋势平滑度,再用自适应粒子群与多维灰色模型算法组合,使预测的精度在原始数据不完整的情况下达到最高,为能源信息化水平不足提供了新的解决思路,解决了企业的系统优化,能源调度和管理的问题。将提出的改进算法在实际的企业项目中运行,结果显示:优化后的自适应粒子群多维灰色模型预测算法正确率最高可达到93.573%,比传统的预测算法精确度提高约36%左右。
In the information and digital environment, the online monitoring method of energy management system has virtually become the most basic measure of enterprise energy management. The energy demand prediction function in the system provides the most powerful data support for energy conservation and consumption reduction of enterprises. In order to improve the prediction accuracy, this paper proposes an improved multidimensional grey model energy prediction algorithm. Firstly, the exponential weighting method is used to process the source characteristic data to increase the trend smoothness, and then the adaptive particle swarm optimization and multidimensional grey model algorithm are combined to maximize the prediction accuracy when the original data is incomplete, It provides a new solution for the lack of informatization of energy data, and solves the problems of enterprise system optimization, energy scheduling and management. The results show that the accuracy of the optimized adaptive particle swarm multidimensional grey model prediction algorithm can reach 93.573%, which is about 36% higher than that of the traditional prediction algorithm.
[1] | 中国产业经济信息网. 中国能源大数据报告(2020)——能源综合篇[EB/OL].
http://www.cinic.org.cn/sj/sdxz/shengchanny/817661.html, 2020-05-21. |
[2] | 王恒斌. 浅谈大数据时代的数据挖掘与分析[J]. 信息系统工程, 2018, 297(9): 128-128. |
[3] | Wooldridge, J.M. (2009) On Estimating Firm-Level Production Functions Using Proxy Vari-ables to Control for Unobservable. Economics Letters, 104, 112-114. https://doi.org/10.1016/j.econlet.2009.04.026 |
[4] | Zhang, X.G. and Zhang, S. (2001) Technical Efficiency in China’s Iron and Steel Industry: Evidence from the New Census Data. International Review of Applied Economics, 15, 199-211. https://doi.org/10.1080/02692170151137078 |
[5] | 张丽峰. 中国能源供求预测模型及发展对策研究[D]: [博士学位论文]. 北京: 首都经济贸易大学, 2006. |
[6] | 吴智峰. 有色企业能效监测系统的开发与实现[D]: [硕士学位论文]. 广州: 广东工业大学, 2012. |
[7] | 张怡, 魏勇, 熊常伟. 灰色模型GM(1,1)的一种新优化方法[J]. 系统工程理论与实践, 2007(4): 141-146. |
[8] | 谢乃明, 刘思峰. 离散GM(1,1)模型与灰色预测模型建模机理[J]. 系统工程理论与实践, 2005, 25(1): 93-99. |
[9] | 陈淑燕, 陈家胜. 一种改进的灰色模型在交通量预测中的应用[J]. 公路交通科技, 2004, 21(2): 80-83. |
[10] | 牛东晓, 陈志业, 邢棉, 等. 具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J]. 中国电机工程学报, 2002, 22(1): 29-29. |
[11] | 黄婉平. 自适应粒子群优化算法及其应用研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2006. |
[12] | Merlevede, B., Schoors, K. and Spatareanu, M. (2014) FDI Spillovers and the Time since Foreign Entry. World Develop-ment, 56, 108-126. https://doi.org/10.1016/j.worlddev.2013.10.022 |
[13] | Zhu, Q., Li, X., Li, F., et al. (2019) The Potential for Energy Saving and Carbon Emission Reduction in China’s Regional Industrial Sectors. Science of the Total Environment, 716, Article ID: 135009. |
[14] | Wang, Q. (2010) Effective Policies for Renewable Energy—The Example of China’s Wind Power—Lessons for China’s Photovoltaic Power. Renewable and Sustainable Energy Reviews, 14, 702-712.
https://doi.org/10.1016/j.rser.2009.08.013 |
[15] | 化柏林, 李广建. 大数据环境下多源信息融合的理论与应用探讨[J]. 图书情报工作, 2015(16): 5-10. |