全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Three Dimensional Space-Time Gravitational Metric, 3 Space + 3 Time Dimensions

DOI: 10.4236/jhepgc.2021.74074, PP. 1230-1254

Keywords: Escape Velocity, Spherical Gravitational Metric, Schwarzschild Radius, Collision Space-Time, Planck Scale

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have recently suggested a new quantum gravity theory that can be unified with quantum mechanics. We have coined this theory collision space-time. This new theory seems to be fully consistent with a 3-dimensional space-time, that is, three space dimensions and three time-dimensions, so some would call it six-dimensional. However, we have shown that collision-time and collision-length (space) are just two different sides of the same “coin” (space-time), so it is more intuitive to think of them as 3-dimensional space-time. In previous papers, we have not laid out a geometric coordinate system for our theory that also considers gravity, but we will do that here. We are pointing out that Einstein’s negative attitude towards relativistic mass can perhaps cause a weakness in the foundation of general relativity theory. When a relativistic mass is incorporated in the theory, this mass also seems to indicate one needs to move to three-dimensional space-time. Then, for example, our new theory matches fully up with all the properties of the Planck scale in relation to the mathematical properties of micro black holes, not only mathematically but also logically, something we demonstrate clearly that it is not the case of general relativity theory. Our new metric has many benefits as an alternative to the Schwarzschild metric and general relativity theory. It seems to be more consistent with the Planck units than the Schwarzschild metric. Most importantly, it seems to be fully consistent with a new quantum gravity theory that seems to unify gravity with quantum mechanics.

References

[1]  Minkowski, H. (1908) Space and Time. The 80th Assembly of German Natural Scientists and Physicians, Cologne, 21 September 1908, 133-216.
[2]  Haug, E.G. (2012) Rethinking the Foundation of Physics and Its Relation to Quantum Gravity and Quantum Probabilities: Unification of Gravity and Quantum Mechanics.
https://vixra.org/abs/2012.0089
[3]  Haug, E.G. (2021) Quantum Gravity Hidden in Newton Gravity and How to Unify It with Quantum Mechanics. In: The Origin of Gravity from the First Principles, NOVA Publishing, New York.
[4]  Haug, E.G. (2020) Collision Space-Time: Unified Quantum Gravity. Physics Essays, 33, 46.
https://doi.org/10.4006/0836-1398-33.1.46
[5]  Cole, E.A.B. (1980) Particle Decay in Six-Dimensional Relativity. Journal of Physics A: Mathematical and General, 13, 109.
https://doi.org/10.1088/0305-4470/13/1/012
[6]  Ziino, G. (1981) Three-Dimensional Time and Thomas Precession. Lettere al Nuovo Cimento, 31, 629-632.
https://doi.org/10.1007/BF02777968
[7]  Cole, E.A.B. (1983) A Proposed Observational Test of Six-Dimensional Relativity. Journal of Physics A: Mathematical and General, 85, 282.
https://doi.org/10.1016/0375-9601(83)90019-1
[8]  Boyling, J.B. and Cole, E.A.B. (1993) Six-Dimensional Dirac Equation. International Journal of Theoretical Physics, 32, 801-812.
https://doi.org/10.1007/BF00671667
[9]  Lanciani, P.A. (1999) Model of the Electron in a 6-Dimensional Spacetime. Foundations of Physics, 29, 251-265.
https://doi.org/10.1023/A:1018825722778
[10]  Pilotti, J. (2019) How Minkowski Could Have Discovered Six Dimensional Spacetime. Second Hermann Minkowski Meeting, Albena, 13-16 May 2019, 463.
http://www.minkowskiinstitute.org/meetings/2019/Abstracts/Pilotti.pdf
[11]  Cole, E.A.B. (1977) Superluminal Transformations Using Either Complex Space-Time or Real Space Time Symmetry. Il Nuovo Cimento A, 40, 171-180.
https://doi.org/10.1007/BF02776784
[12]  Spavieri, G., Quintero, J., Gilles, G.T. and Rodriguez, M. (2011) A Survey of Existing and Proposed Classical and Quantum Approaches to the Photon Mass. The European Physical Journal D, 61, 531-550.
https://doi.org/10.1140/epjd/e2011-10508-7
[13]  Sommerfeld, A. (1948) Elekrodynamik, Vorlesnungen über Theoretische Physik: Band III. Dieterich.
[14]  Rindler, W. (2001) Relativity, Special, General and Cosmology. Second Edition, Oxford University Press, Oxford.
[15]  Schwarzschild, K. (1916) über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 189.
[16]  Schwarzschild, K. (1916) über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 424.
[17]  Einstein, A. (1916) Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin.
[18]  Augousti, A.T. and Radosz, A. (2006) An Observation on the Congruence of the Escape Velocity in Classical Mechanics and General Relativity in a Schwarzschild Metric. European Journal of Physics, 376, 331-335.
https://doi.org/10.1088/0143-0807/27/2/015
[19]  Guifry, M. (2019) Modern General Relativity. Cambridge University Press, Cambridge.
[20]  Haug, E.G. (2021) Demonstration That Newtonian Gravity Moves at the Speed of Light and Not Instantaneously (Infinite Speed) as Thought! Journal of Physics Communication, 5, Article ID: 025005.
[21]  Lan, S., Kuan, P., Estey, B., English, D., Brown, J.M., Hohensee, M.A. and Müller (2013) A Clock Directly Linking Time to a Particle’s Mass. Science, 339, 554-557.
https://doi.org/10.1126/science.1230767
[22]  Dolce, D. and Perali, A. (2015) On the Compton Clock and the Undulatory Nature of Particle Mass in Graphene Systems. The European Physical Journal plus, 130, Article No. 41.
https://doi.org/10.1140/epjp/i2015-15041-5
[23]  Rindler, W. (1960) Special Relativity. Oliver and Boyd, Edinburgh.
[24]  Rindler, W. (2006) Relativity, Special, General and Cosmology. Second Edition, Oxford University Press, Oxford.
[25]  Giancoli, D.C. (2009) Physics for Scientists & Engineers. Pearson Prentice Hall, Hoboken.
[26]  Tipler, P.A. and Llewellyn, R.A. (1999) Modern Physics. Third Edition, W.H. Freeman and Company, New York.
[27]  Grøn, Ø. (2020) Introduction to Einstein’s Theory of Relativity, from Newton’s Attractive Gravity to the Repulsive Gravity of Vacuum Energy. Second Edition, Springer Verlag, Berlin.
[28]  Born, M. (1920) Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (Einstein’s Theory of Relativity, Translated to English 1965, Dover). Springer, Berlin.
[29]  Adler, C.G. (1987) Dose Mass Really Depends on Velocity Dad? American Journal of Physics, 55, 739-743.
[30]  Okun, L.B. (1989) The Concept of Mass. Physics Today, 42, 31.
https://doi.org/10.1063/1.881171
[31]  Hecht, E. (2009) Einstein Never Approved the Relativistic Mass Formula. The Physics Teacher, 47, 336-341.
https://doi.org/10.1119/1.3204111
[32]  Taylor, E.F. and Wheeler, J.A. (1992) Spacetime Physics, Introduction to Special Relativity. W. H. Freeman and Company, New York.
[33]  Rindler, W. (1990) Putting to Rest Mass Misconceptions. Physics Today, 43, 13-15.
https://doi.org/10.1063/1.2810555
[34]  Jammer, M. (2000) Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, Princeton.
[35]  Haug, E.G. (2016) The Gravitational Constant and the Planck Units. A Simplification of the Quantum Realm. Physics Essays, 29, 558.
https://doi.org/10.4006/0836-1398-29.4.558
[36]  Haug, E.G. (2016) Planck Quantization of Newton and Einstein Gravitation. International Journal of Astronomy and Astrophysics, 6, 206-217.
https://doi.org/10.4236/ijaa.2016.62017
[37]  Haug, E.G. (2017) Can the Planck Length Be Found Independent of Big G? Applied Physics Research, 9, 58.
[38]  Haug, E.G. (2020) Finding the Planck Length Multiplied by the Speed of Light without Any Knowledge of g, c, or h, Using a Newton Force Spring. Journal Physics Communication, 4, Article ID: 075001.
[39]  Compton, A.H. (1923) A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 21, 483-502.
https://doi.org/10.1103/PhysRev.21.483
[40]  Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften.
[41]  Planck, M. (1906) Vorlesungen über die Theorie der Wärmestrahlung. J.A. Barth, Leipzig, 163. See Also the English Translation “The Theory of Radiation” (1959) Dover.
[42]  Bridgman, P.W. (1931) Dimensional Analysis. Yale University Press, New Haven.
[43]  Padmanabhan, T. (1985) Planck Length as the Lower Bound to All Physical Length Scales. General Relativity and Gravitation, 17, 215-221.
https://doi.org/10.1007/BF00760244
[44]  Hossenfelder, S. (2012) Can We Measure Structures to a Precision Better than the Planck Length? Classical and Quantum Gravity, 29, Article ID: 115011.
[45]  Hossenfelder, S. (2013) Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity, 16, Article No. 2.
[46]  Obermair, G.M. (2013) Primordial Planck Mass Black Holes (PPMBHs) as Candidates for Dark Matter? Journal of Physics, Conference Series, 442, Article ID: 012066.
[47]  Faraoni, V. (2017) Three New Roads to the Planck Scale. American Journal of Physics, 85, 865-869.
https://doi.org/10.1119/1.4994804
[48]  Unzicker, A. (2020) The Mathematical Reality: Why Space and Time Are an Illusion.
[49]  Haug, E.G. (2021) Using a Grandfather Pendulum Clock to Measure the World’s Shortest Time Interval, the Planck Time (with Zero Knowledge of G). Journal of Applied Mathematics and Physics, 9, 1076-1088.
https://doi.org/10.4236/jamp.2021.95074
[50]  Motz, L. (1962) Gauge Invariance and the Structure of Charged Particles. Il Nuovo Cimento (1955-1965), 260, 672-697.
https://doi.org/10.1007/BF02781795
[51]  Motz, L. (1966) A Gravitational Theory of the Mu Meson and Leptons in General. Rutherford Observatory, Columbia University, New York.
[52]  Markov, M.A. (1967) Elementary Particles of Maximally Large Masses (Quarks and Maximons). Soviet Physics JPT, 24, 584.
http://inis.jinr.ru/sl/NTBLIB/JINR-E2-2973.pdf
[53]  Markov, M.A. (1987) The “Maximon” and “Minimon” in Light of a Possible Formulation of the Concept of an “Elementary Particle”. Soviet Physics JPT, 45, 143.
http://jetpletters.ru/ps/1237/article_18690.shtml
[54]  Hawking, S. (1971) Gravitationally Collapsed Objects of Very Low Mass. Monthly Notices of the Royal Astronomical Society, 152, 75-78.
https://doi.org/10.1093/mnras/152.1.75
[55]  Motz, L. and Epstein, J. (1979) The Gravitational Charge 1/2√hc as a Unifying Principle in Physics. Il Nuovo Cimento, 51, 88-113.
https://doi.org/10.1007/BF02822327
[56]  Haug, E.G. (2016) The Planck Mass Particle Finally Discovered! The True God Particle! Good Bye to the Point Particle Hypothesis!
http://vixra.org/abs/1607.0496
[57]  Haug, E.G. (2021) A New Full Relativistic Escape Velocity and a New Hubble Related Equation for the Universe.
https://hal.archives-ouvertes.fr

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133