All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Phase Diagram and Edge States of Surface States of Topological Superconductors

DOI: 10.4236/wjcmp.2021.113005, PP. 65-76

Keywords: Majorana Fermion, Phase Diagrams, Topological Superconductor, Surface States

Full-Text   Cite this paper   Add to My Lib


Majorana fermions in two-dimensional systems satisfy non-Abelian statistics. They are possible to exist in topological superconductors as quasi particles, which is of great significance for topological quantum computing. In this paper, we study a new promising system of superconducting topological surface state topological insulator thin films. We also study the phase diagrams of the model by plotting the Majorana edge states and the density of states in different regions of the phase diagram. Due to the mirror symmetry of the topological surface states, the Hamiltonian can be block diagonalized into two spin-triplet p-wave superconductors, which are also confirmed by the phase diagrams. The chiral Majorana edge modes may provide a new route for realizing topological quantum computation.


[1]  Majorana, E. (1937) Teoria simmetrica dell’elettrone e del positrone. Il Nuovo Cimento (1924-1942), 14, Article No. 171.
[2]  Akhmerov, A.R., Nilsson, J. and Beenakker, C.W.J. (2009) Electrically Detected Interferometry of Majorana Fermions in a Topological Insulator. Physical Review Letters, 102, Article ID: 216404.
[3]  Sato, M. and Fujimoto, S. (2010) Existence of Majorana Fermions and Topological Order in Nodal Superconductors with Spin-Orbit Interactions in External Magnetic Fields. Physical Review Letters, 105, Article ID: 217001.
[4]  Alicea, J. (2012) New Directions in the Pursuit of Majorana Fermions in Solid State Systems. Reports on Progress in Physics, 75, Article ID: 076501.
[5]  Fu, L. and Kane, C.L. (2008) Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Physical Review Letters, 100, Article ID: 096407.
[6]  Lutchyn, R.M., Sau, J.D. and Sarma, D. (2010) Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures. Physical Review Letters, 105, Article ID: 077001.
[7]  Moore, G. and Read, N. (1991) Nonabelions in the Fractional Quantum Hall Effect. Nuclear Physics B, 360, 362-396.
[8]  Read, N. and Green, D. (2000) Paired States of Fermions in Two-Dimensions with Breaking of Parity and Time Reversal Symmetries, and the Fractional Quantum Hall Effect. Physical Review B, 61, 10267-10297.
[9]  Wen, X.G. (1991) Non-Abelian Statistics in the Fractional Quantum Hall States. Physical Review Letters, 66, 802-805.
[10]  Mackenzie, A.P. and Maeno, Y. (2003) The Superconductivity of Sr2RuO4 and the Physics of Spin-Triplet Pairing. Reviews of Modern Physics, 75, 657-712.
[11]  Ueno, Y., Yamakage, A., Tanaka, Y. and Sato, M. (2013) Symmetry-Protected Majorana Fermions in Topological Crystalline Superconductors: Theory and Application to Sr2RuO4. Physical Review Letters, 111, Article ID: 087002.
[12]  Maeno, Y., Kittaka, S. and Nomura, T. (2012) Evaluation of Spin-Triplet Superconductivity in Sr2RuO4. Journal of the Physical Society of Japan, 81, Article ID: 011009.
[13]  Rice, T.M. and Sigrist, M. (1995) Sr2RuO4: An Electronic Analogue of 3He. Journal of Physics: Condensed Matter, 7, Article No. L643.
[14]  Pustogow, A., Luo, Y.K., Chronister, A., Su, Y.-S., Sokolov, D.A., Jerzembeck, F., et al. (2019) Constraints on the Superconducting Order Parameter in Sr2RuO4 from Oxygen-17 Nuclear Magnetic Resonance. Nature, 574, 72-75.
[15]  Qi, X.L., Hughes, T.L. and Zhang, S.C. (2010) Chiral Topological Superconductor from the Quantum Hall State. Physical Review B, 82, Article ID: 184516.
[16]  He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., et al. (2017) Chiral Majorana Fermion Modes in a Quantum Anomalous Hall Insulator-Superconductor Structure. Science, 357, 294-299.
[17]  Lian, B., Sun, X.Q. and Vaezi, A. (2018) Topological Quantum Computation Based on Chiral Majorana Fermions. Proceedings of the National Academy of Sciences of the United States of America, 115, 10938-10942.
[18]  Kong, L.Y., Zhu, S.Y., Papaj, M., Chen, H., Cao, L., Isobe, H., et al. (2019) Half-Integer Level Shift of Vortex Bound States in an Iron-Based Superconductor. Nature Physics, 15, 1181-1187.
[19]  Wang, Z.Y., Rodriguez, J.O., Jiao, L., Howard, S., Graham, M., Gu, G.D., et al. (2020) Evidence for dispersing 1D Majorana Channels in an Iron-Based Superconductor. Science, 367, 104-108.
[20]  Zhang, P., Wang, Z., Wu, X., Yaji, K., Ishida, Y., Kohama, Y., et al. (2019) Multiple Topological States in Iron-Based Superconductors. Nature Physics, 15, 41-47.
[21]  Zhang, P., Yaji, K., Hashimoto, T., Ota, Y., Kondo, T., Okazaki, K., et al. (2018) Observation of Topological Superconductivity on the Surface of an Iron-Based Superconductor. Science, 360, 182-186.
[22]  Wang, D.F., Kong, L.Y., Fan, P., Chen, H., Zhu, S., Liu, W., et al. (2018) Evidence for Majorana Bound States in an Iron-Based Superconductor. Science, 362, 333-365.
[23]  Liu, Q., Chen, C., Zhang, T., Peng, R., Yan, Y.-J., Wen, C.-H.-P., et al. (2018) Robust and Clean Majorana Zero Mode in the Vortex Core of High-Temperature Superconductor (Li0.84Fe0.16) OHFeSe. Physical Review X, 8, Article ID: 041056.
[24]  Yin, J.X., Wu, Z., Wang, J.H., Ye, Z.-Y., Gong, J., Hou, X.-Y., et al. (2015) Observation of a Robust Zero-Energy Bound State in Iron-Based Superconductor Fe(Te,Se). Nature Physics, 11, 543-546.
[25]  Fukui, T., Hatsugai, Y. and Suzuki, H. (2005) Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances. Journal of the Physical Society of Japan, 74, 1674-1677.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413