全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Description of Minimal Entropy Hellinger Sigma Martingale Density of Order One, Order q and Order Zero

DOI: 10.4236/jmf.2021.113030, PP. 528-553

Keywords: Sigma Martingale Density, Jacod Decomposition, Entropy-Hellinger Process, Compensator, Minimal Entropy-Hellinger Sigma Martingale Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

Generally in this paper, we show how the new version of parameter?\"\" in Jacod decomposition will change an expression of entropy-Hellinger process of order one, order q and order zero and consequently an equation of minimal entropy Hellinger sigma martingale density for all orders. This is because even the measurable function?\"\" which is an important parameter of an equation of minimal martingale density changes. In order to get a required parameter \"\", we introduce the function?\"\" during our calculation for all orders. The result is different to order zero because we failed to get an equation of minimal entropy-Hellinger sigma martingale density of order zero.

References

[1]  Choulli, T. and Hurd, T.R. (2001) The Role of Hellinger Processes in Mathematical Finance. Entropy, 3, 150-161. https://doi.org/10.3390/e3030150
[2]  Choulli, T. and Stricker, C. (2009) Comparing the Minimal Hellinger Martingale Measure of Order q to the q-Optimal Martingale Measure. Stochastic Processes and Their Applications, 119, 1368-1385. https://doi.org/10.1016/j.spa.2008.07.002
[3]  Choulli, T. and Stricker, C. (2006) More on Minimal Entropy-Hellinger Martingale Measure. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 16, 1-19.
https://doi.org/10.1111/j.1467-9965.2006.00258.x
[4]  Choulli, T., Stricker, C. and Li, J. (2007) Minimal Hellinger Martingale Measures of Order q. Finance and Stochastics, 11, 399-427.
https://doi.org/10.1007/s00780-007-0039-3
[5]  Ma, J.F. (2013) Minimal Hellinger Deflators and HARA forward Utilities with Applications: Hedging with Variable Horizon.
[6]  Kabanov, Y., Rutkowski, M. and Zariphopoulou, T. (2013) Inspired by Finance: The Musiela Festschrift. Springer Science & Business Media, Berlin.
https://doi.org/10.1007/978-3-319-02069-3
[7]  Choulli, T. and Schweizer, M. (2011) Stability of Sigma-Martingale Densities in L Log L under an Equivalent Change of Measure. Swiss Finance Institute Research Paper, (11-67). https://doi.org/10.2139/ssrn.1986855
[8]  Choulli, T. and Schweizer, M. (2015) Locally Phi-Integrable Sigma-Martingale Densities for General Semimartingales. Swiss Finance Institute Research Paper, (15-15).
https://doi.org/10.2139/ssrn.2606674
[9]  Harrison, J.M. and Kreps, D.M. (1979) Martingales and Arbitrage in Multiperiod Securities Markets. Journal of Economic Theory, 20, 381-408.
https://doi.org/10.1016/0022-0531(79)90043-7
[10]  Harrison, J.M. and Pliska, S.R. (1981) Martingales and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and Their Applications, 11, 215-260. https://doi.org/10.1016/0304-4149(81)90026-0
[11]  Kallsen J. (2002) Utility-Based Derivative Pricing in Incomplete Markets. In: Mathematical Finance Bachelier Congress, Springer, Berlin, 313-338.
https://doi.org/10.1007/978-3-662-12429-1_15
[12]  Follmer, H. and Schweizer, M. (2010) Minimal Martingale Measure. Encyclopedia of Quantitative Finance. https://doi.org/10.1002/9780470061602.eqf04015
[13]  Schweizer, M. (1995) On the Minimal Martingale Measure and the Mollmer-Schweizer Decomposition. Stochastic Analysis and Applications, 13, 573-599.
https://doi.org/10.1080/07362999508809418
[14]  Schweizer, M. (1999) A Minimality Property of the Minimal Martingale Measure. Statistics & Probability Letters, 42, 27-31.
https://doi.org/10.1016/S0167-7152(98)00180-1
[15]  Follmer, H. and Schweizer, M. (1991) Hedging of Contingent Claims under Incomplete Information. Applied Stochastic Analysis, 5, 19-31.
[16]  Delbaen, F., Schachermayer, W., et al. (1996) The Variance-Optimal Martingale Measure for Continuous Processes. Bernoulli, 2, 81-105.
https://doi.org/10.2307/3318570
[17]  Schweizer, M., et al. (1996) Approximation Pricing and the Variance-Optimal Martingale Measure. The Annals of Probability, 24, 206-236.
https://doi.org/10.1214/aop/1042644714
[18]  Frittelli, M. (2000) The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets. Mathematical Finance, 10, 39-52.
https://doi.org/10.1111/1467-9965.00079
[19]  Miyahara, Y. (1996) Canonical Martingale Measures of Incomplete Assets Markets. Probability Theory and Mathematical Statistics, Tokyo, 26-30 July 1995, 343-352.
[20]  Miyahara, Y. (1999) Minimal Entropy Martingale Measures of Jump Type Price Processes in Incomplete Assets Markets. Asia-Pacific Financial Markets, 6, 97-113.
https://doi.org/10.1023/A:1010062625672
[21]  Miyahara, Y. (2001) [Geometric Levy Process & MEMM] Pricing Model and Related Estimation Problems. Asia-Pacific Financial Markets, 8, 45-60.
https://doi.org/10.1023/A:1011445109763
[22]  Goll, T. and Ruschendorf, L. (2001) Minimax and Minimal Distance Martingale Measures and Their Relationship to Portfolio Optimization. Finance and Stochastics, 5, 557-581. https://doi.org/10.1007/s007800100052
[23]  Bellini, F. and Frittelli, M. (2002) On the Existence of Minimax Martingale Measures. Mathematical Finance, 12, 1-21. https://doi.org/10.1111/1467-9965.00001
[24]  Choulli, T. and Stricker, C. (2005) Minimal Entropy-Hellinger Martingale Measure in Incomplete Markets. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 15, 465-490.
https://doi.org/10.1111/j.1467-9965.2005.00229.x
[25]  Grandits, P. (2000) On Martingale Measures for Stochastic Processes with Independent Increments. Theory of Probability & Its Applications, 44, 39-50.
https://doi.org/10.1137/S0040585X97977355
[26]  Davis, M.H.A. (1997) Option Pricing in Incomplete Markets. Mathematics of Derivative Securities, 15, 216-226.
[27]  Karatzas, I., Lehoczky, J.P. and Shreve, S.E. (1987) Optimal Portfolio and Consumption Decisions for a Small Investor on a Finite Horizon. SIAM Journal on Control and Optimization, 25, 1557-1586. https://doi.org/10.1137/0325086
[28]  Kramkov, D. and Schachermayer, W. (1999) The Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets. Annals of Applied Probability, 9, 904-950. https://doi.org/10.1214/aoap/1029962818
[29]  Kallsen, J. (1999) A Utility Maximization Approach to Hedging in Incomplete Markets. Mathematical Methods of Operations Research, 50, 321-338.
https://doi.org/10.1007/s001860050100
[30]  Becherer, D. (2001) Rational Hedging and Valuation with Utility-Based Preferences.
[31]  Jacod, J. (2006) Calcul stochastique et problemes de martingales, Volume 714. Springer, Berlin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133