全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

势场调控下石墨烯/六方氮化硼范德瓦尔斯异质结的能带结构
Band Structure of Graphene/Hexagonal Boron Nitride Van Der Waals Heterojunction Manipulated by Potential Field

DOI: 10.12677/CMP.2021.103009, PP. 73-79

Keywords: 石墨烯/氮化硼异质结,局域势,层间势,能隙
Graphene/Boron Nitride Heterojunction
, Local Potential, Interlayer Potential, Energy Gap

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯和六方氮化硼堆叠在一起时可以通过范德瓦尔斯力形成层状异质结,称为范德瓦尔斯异质结。我们利用紧束缚模型研究了AA堆叠和AB堆叠结构下石墨烯/六方氮化硼范德瓦尔斯异质结体系的能带结构。提出了利用局域势和层间势调控能带的有效方法。结果表明,势场可以改变范德瓦尔斯材料的能带结构,使体系从绝缘相向金属相转变。
When graphene and hexagonal boron nitride are stacked together, a layered heterojunction can be formed by van der Waals force, which is called van der Waals heterojunction. We use the tight-binding model to study the band structure of the AA-stacked and AB-stacked graphene/hexagonal boron nitride van der Waals heterojunctions. An effective method to manipulate the energy band by using the local potential and the inter-layer potential is proposed. The results show that the potential fields can change the energy band structures of van der Waals materials, leading to a phase transition from insulating phase to metallic phase.

References

[1]  Castro, E.V., Novoselov, K.S., Morozov, S.V., et al. (2010) Electronic Properties of a Biased Graphenebilayer. Journal of Physics: Condensed Matter, 22, Article No. 175503.
https://doi.org/10.1088/0953-8984/22/17/175503
[2]  Peres, N.M.R., Guinea, F. and Castro Neto, A.H. (2006) Electronic Properties of Disordered Two-Dimensional Carbon. Physical Review B, 73, Article No. 125411.
https://doi.org/10.1103/PhysRevB.73.125411
[3]  Rao, C.N., Sood, A.K., Subrahmanyam, K.S., et al. (2009) Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition, 48, 7752-7777.
https://doi.org/10.1002/anie.200901678
[4]  Castro Neto, A.H., Guinea, F., Peres, N.M.R., et al. (2009) The Electronic Properties of Graphene. Reviews of Modern Physics, 81, 109-162.
https://doi.org/10.1103/RevModPhys.81.109
[5]  Han, M.Y., Ozyilmaz, B., Zhang, Y., et al. (2007) Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 98, Article No. 206805.
https://doi.org/10.1103/PhysRevLett.98.206805
[6]  Yang, L., Park, C.H., Son, Y.W., et al. (2007) Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Physical Review Letters, 99, Article No. 186801.
https://doi.org/10.1103/PhysRevLett.99.186801
[7]  Bostwick, A., Mcchesney, J., Ohta, T., et al. (2009) Experimental Studies of the Electronic Structure of Graphene. Progress in Surface Science, 84, 380-413.
https://doi.org/10.1016/j.progsurf.2009.08.002
[8]  Castro, E.V., Novoselov, K.S., Morozov, S.V., et al. (2007) Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Physical Review Letters, 99, Article No. 216802.
https://doi.org/10.1103/PhysRevLett.99.216802
[9]  Moon, P. and Koshino, M. (2014) Electronic Properties of Graphene/Hexagonal-Boron-Nitride Moiré Superlattice. Physical Review B, 90, Article No. 155406.
https://doi.org/10.1103/PhysRevB.90.155406
[10]  N’diaye, A.T., Bleikamp, S., Feibelman, P.J., et al. (2006) Two-Dimensional Ir Cluster Lattice on a Graphene Moire on Ir (111). Physical Review Letters, 97, Article No. 215501.
https://doi.org/10.1103/PhysRevLett.97.215501
[11]  Varchon, F., Feng, R., Hass, J., et al. (2007) Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate. Physical Review Letters, 99, Article No. 126805.
https://doi.org/10.1103/PhysRevLett.99.126805
[12]  Fan, Y., Zhao, M., Wang, Z., et al. (2011) Tunable Electronic Structures of Graphene/Boron Nitrideheterobilayers. Applied Physics Letters, 98, Article No. 083103.
https://doi.org/10.1063/1.3556640
[13]  Titov, M. and Katsnelson, M.I. (2014) Metal-Insulator Transition in Graphene on Boron Nitride. Physical Review Letters, 113, Article No. 096801.
https://doi.org/10.1103/PhysRevLett.113.096801
[14]  Watanabe, K., Taniguchi, T. and Kanda, H. (2004) Direct-Bandgap Properties and Evidence for Ultravioletlasing of Hexagonalboron Nitride Single Crystal. Nature Materials, 3, 404-409.
https://doi.org/10.1038/nmat1134
[15]  Chittari, B.L., Chen, G., Zhang, Y., et al. (2019) Gate-Tunable Topological Flat Bands in TrilayerGraphene Boron-Nitride Moire Superlattices. Physical Review Letters, 122, Article No. 016401.
https://doi.org/10.1103/PhysRevLett.122.016401
[16]  Song, J.C., Samutpraphoot, P. and Levitov, L.S. (2015) Topological Bloch Bands in Graphenesuperlattices. Proceedings of the National Academy of Sciences of the United States of America, 112, 10879-10883.
https://doi.org/10.1073/pnas.1424760112
[17]  Yokomizo, Y. and Nakamura, J. (2013) Giant Seebeck Coefficient of the Graphene/h-BN Superlattices. Applied Physics Letters, 103, Article No. 113901.
https://doi.org/10.1063/1.4820820
[18]  Jiang, Z., Henriksen, E.A., Tung, L.C., et al. (2007) Infrared Spectroscopy of Landau Levels of Graphene. Physical Review Letters, 98, Article No. 197403.
https://doi.org/10.1103/PhysRevLett.98.197403
[19]  Jung, J., Dasilva, A.M., Macdonald, A.H., et al. (2015) Origin of Band Gaps in Graphene on Hexagonal Boron Nitride. Nature Communications, 6, Article No. 6308.
https://doi.org/10.1038/ncomms7308
[20]  Wallbank, J.R., Patel, A.A., Mucha-Kruczyński, M., et al. (2013) Generic Miniband Structure of Graphene on a Hexagonal Substrate. Physical Review B, 87, Article No. 245408.
https://doi.org/10.1103/PhysRevB.87.245408
[21]  Yankowitz, M., Xue, J., Cormode, D., et al. (2012) Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride. Nature Physics, 8, 382-386.
https://doi.org/10.1038/nphys2272
[22]  S?awińska, J., Zasada, I., Kosiński, P., et al. (2010) Reversible Modifications of Linear Dispersion: Graphene between Boron Nitride Monolayers. Physical Review B, 82, Article No. 085431.
https://doi.org/10.1103/PhysRevB.82.085431

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133