|
湖南道县虎子岩煌斑岩地球化学特征及其构造意义
|
Abstract:
本文选择处于钦杭带中段的湖南道县虎子岩煌斑岩作为研究载体,通过地球化学特征探讨其蕴含的构造意义。虎子岩煌斑岩w(SiO2)为44.70%~49.13%,w(Na2O+ K2O)为2.21%~4.40%,w(K2O/Na2O)为1.80~4.84,属钾质–超钾质钙碱性煌斑岩。其稀土总量ΣREE为176.64 × 10?6~250.35 × 10?6,LREE/HREE平均为8.36,具轻稀土富集、重稀土亏损、轻微的Eu、Ce负异常的特点;微量元素K、Th、Nb、Ce、P、Hf、Ti为负异常,正异常的元素有Ba、U、Zr。研究认为,虎子岩煌斑岩来源于富集地幔,在晚侏罗世燕山运动的NWW向挤压转为拉张过程中沿断裂上升侵位,岩浆在经历了板块俯冲导致部分熔融和分离结晶后形成的,在成岩过程中没有发生明显的地壳混染作用。
The Huziyan lamprophyre, located in the middle of Qinzhou-Hangzhou Belt, is chosen as the re-search carrier to explore its structural significance through geochemical characteristics. The Hu-ziyan lamprophyre’s contents of SiO2 range from 44.70% to 49.13%, its contents of Na2O + K2O range from 2.21% to 4.40%, and its values of K2O/Na2O range from 1.80 to 4.84. It belongs to the potash-ultrapotash calc-alkaline lamprophyre. The values of ∑REE ranges from 176.64 × 10?6 to 250.35 × 10?6, and the values of LREE/HREE is 8.36 on average. It has the characteristics of LREE enrichment, HREE deficiency and Eu, Ce slight negative anomaly. The trace elements like K, Th, Nb, Ce, P, Hf, Ti have negative anomaly, and the elements like Ba, U, Zr have positive anomaly. It is considered that, the Huziyan lamprophyre is originated from the enriched mantle, and it is em-placed along the fault, made in one period of Yanshanian movement during middle and late Jurassic, and in this period the process of compression with NWW-trending changes to extension. The magma was formed by partial melting and a few separation-crystallization after the plate subduction, and here is no obvious crustal contamination during the diagenetic process.
[1] | Stoppa, F., Rukhlov, A.S., Bell, K., Schiazza, M. and Vichi, G. (2014) Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 188, 97-112. https://doi.org/10.1016/j.lithos.2013.10.010 |
[2] | Palke, A.C., Renfro, N.D. and Berg, R.B. (2016) Origin of Sapphires from a Lamprophyre Dike at Yogo Gulch, Montana USA: Clues from Their Melt Inclusions. Lithos, 260, 339-344. https://doi.org/10.1016/j.lithos.2016.06.004 |
[3] | Xu, D., Deng, T., Chi, G., Wang, Z., Zou, F., Zhang, J., et al. (2017) Gold Mineralization in the Jiangnan Orogenic Belt of South China: Geological, Geochemical and Geochronological characteristics, Ore Deposit-Type and Geodynamic Setting. Ore Geology Re-views, 88, 565-618. https://doi.org/10.1016/j.oregeorev.2017.02.004 |
[4] | Yang, Z.-Y. and Jiang, S.-Y. (2018) Diverse Lamprophyres Origins Corresponding to Lithospheric Thinning: A Case Study in the Jiurui District of Middle-Lower Yangtze River Belt, South China Craton. Gondwana Research, 54, 62-80.
https://doi.org/10.1016/j.gr.2017.10.004 |
[5] | 梁恩云, 陈迪, 邹光均, 熊苗. 湖南江永回龙圩煌斑岩地球化学特征及其构造意义[J]. 桂林理工大学学报, 2018, 38(4): 640-646. |
[6] | Li, X.-Y., Li, S.-Z., Suo, Y.-H., Somerville, I.D., Huang, F., Liu, X., et al. (2018) Early Cretaceous Diabases, Lamprophyres and Andesites-Dacites in Western Shandong, North China Craton: Implications for Local Delamination and Paleo-Pacific Slab Rollback. Journal of Asian Earth Sciences, 160, 426-444.
https://doi.org/10.1016/j.jseaes.2017.08.005 |
[7] | Rock, N.M.S. and Groves, D.I. (1988) Can Lamprophyres Resolve the Genetic Controversy over Mesothermal Gold Deposit? Geology, 16, 538-541. https://doi.org/10.1130/0091-7613(1988)016%3C0538:CLRTGC%3E2.3.CO;2 |
[8] | 朱炳泉, 张玉泉, 谢应文. 滇西洱海东第三纪超K质火成岩系的Nd-Sr-Pb同位素特征与西南大陆地幔演化[J]. 地球化学, 1992(3): 201-212. |
[9] | 黄智龙, 王联魁, 朱成明. 云南马厂箐金矿区煌斑岩地球化学及成因探讨[J]. 矿物岩石, 1996(2): 82-89. |
[10] | 邱检生, 王德滋, 曾家湖. 鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素地球化学[J]. 高校地质学报, 1997(4): 384-395. |
[11] | 刘燊, 胡瑞忠, 赵军红, 冯彩霞, 钟宏, 曹建劲, 等. 胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究[J]. 岩石学报, 2005, 21(3): 9447-958. |
[12] | 马铁球, 陈俊, 郭乐群, 柏道远, 何江南. 湘东北临湘地区钾质煌斑岩40Ar-39Ar定年及其地球化学特征[J]. 中国地质, 2010, 37(1): 56-63. |
[13] | 王登红, 陈振宇, 许建祥, 刘善宝. 赣南路迳似金伯利岩(金伯利质煌斑岩)锆石的特点和年龄及其构造意义[J]. 岩矿测试, 2012, 31(4): 705-710. |
[14] | 孔华, 全铁军, 奚小双, 钟江临, 陈泽峰, 王高, 等. 湖南宝山矿区煌斑岩的地球化学特征及地质意义[J]. 中国有色金属学报, 2013(9): 2671-2682. |
[15] | 贾丽琼, 莫宣学, 董国臣, 徐文艺, 王梁, 郭晓东, 等. 滇西马厂箐煌斑岩成因: 地球化学、年代学及Sr-Nd-Pb-Hf同位素约束[J]. 岩石学报, 2013, 29(4): 1247-1260. |
[16] | 陈福川, 王庆飞, 李龚健, 赵岩. 滇西哀牢山镇沅煌斑岩40Ar-39Ar年代学和地球化学特征[J]. 岩石学报, 2015, 31(11):3203-3216. |
[17] | 胡阿香, 彭建堂. 湘中锡矿山中生代煌斑岩及其成因研究[J]. 岩石学报, 2016, 32(7): 2041-2056. |
[18] | 翟淳. 论煌斑岩的成因模式[J]. 地质论评, 1981, 27(6): 528-532. |
[19] | Bernard-Griffiths, J., Fourcade, S. and Kupuy, C. (1991) Isotopic Study (Sr, Nd, O and C) of Lam-prophres and Associated Dykes from Tamazert (Morroco): Crustal Contamination Processes and Source Characteristics. Earth and Planetary Science Letters, 103, 190-199. https://doi.org/10.1016/0012-821X(91)90160-J |
[20] | Currie, K.L. and Willianms, P.R. (1993) An Archean Calc-Alkaline Lamprophyre Suite, Northeastern Yilgarn Block, Western Australia. Lithos, 31, 33-50. https://doi.org/10.1016/0024-4937(93)90031-7 |
[21] | 丁清峰. 煌斑岩及其与金矿关系研究的进展[J]. 世界地质, 2001, 20(1):17-24. |
[22] | 符德贵, 周云满, 张长青, 陈庆广, 覃修平. 滇中小水井金矿煌斑岩特征及与金矿化的关系[J]. 地质与勘探, 2010, 46(3): 414-425. |
[23] | 张惠华, 代堰锫, 胡智丹, 周清, 李同柱, 沈战武, 等. 川西江浪穹窿煌斑岩地球化学特征及锆石U-Pb定年[J]. 矿物岩石地球化学通报, 2016, 35(4): 663-673. |
[24] | 谢桂青, 彭建堂, 胡忠瑞, 贾大成. 湖南锡矿山锑矿矿区煌斑岩的地球化学特征[J]. 岩石学报, 2001, 17(4):629-636. |
[25] | 张勇, 陈斌, 邵济安, 翟明国. 华北太行晚中生代煌斑岩地球化学特征及成因探讨[J]. 岩石矿物学杂志, 2003, 22(1): 29-33. |
[26] | 鹿坤, 冯佐海, 侯读杰, 李晓峰. 桂东北煌斑岩源区成分模拟[J]. 矿业快报, 2008, 24(12): 50-52. |
[27] | 蒋丽怡, 付宇, 周浩阳, 王从明, 吕庆松, 孙晓明. 滇西北衙金多金属矿区煌斑岩主微量元素地球化学特征[J]. 矿床地质, 2014(s1): 405-406. |
[28] | 贾大成, 胡瑞忠, 谢桂青. 湘东北中生代基性岩脉岩石地球化学及构造意义[J]. 大地构造与成矿学, 2002, 26(2): 179-184. |
[29] | 王磊, 金鑫镖, 王新宇, 吴祥珂, 刘重芃, 段桂玲. 桂北罗城垒洞煌斑岩形成过程: 地球化学、年代学和Sr-Nd-Pb同位素制约[J]. 地质科技情报, 2015, 34(1): 10-19. |
[30] | 曹华文, 裴秋明, 张寿庭, 王长明, 王光凯, 王亮. 个旧老厂钾质煌斑岩矿物学特征及其锆石U-Pb和黑云母40Ar-39Ar年龄[J]. 地球化学, 2016, 45(6): 545-568. |
[31] | 袁和, 罗先熔, 李武毅, 陈武. 西藏古堆地区煌斑岩地球化学特征及其构造意义[J]. 地质与勘探, 2017, 53(2): 300-309. |
[32] | 张朋, 陈冬, 赵岩, 寇林林, 杨宏智, 王希今, 等. 辽宁榛子沟铅锌矿煌斑岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 中国有色金属学报, 2016, 26(3): 636-647. |
[33] | 饶家荣, 肖海云, 刘耀荣, 柏道远, 邓延林. 扬子、华夏古板块会聚带在湖南的位置[J]. 地球物理学报, 2012, 55(2): 484-502. |
[34] | 杨金豹, 赵志丹, 莫宣学, 盛丹, 丁聪, 王丽丽, 等. 湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义[J]. 岩石学报, 2015, 31(5): 1421-1432. |
[35] | 孔华, 金振民, 林源贤. 道县玄武岩中麻粒岩包体的岩石学及年代学[J]. 长春科技大学学报, 2000, 30(2): 115-119. |
[36] | 李昌年, 钟称生, 王方正, 刘春芳. 桂北-湘南中生代玄武质岩石及其深源包体的地球化学性质和岩石成因探讨[J]. 岩石矿物学杂志, 20(2): 418-431. |
[37] | 刘耀荣, 彭学军, 马爱军, 等. 湖南1:25万道县幅区域地质调查报告[R]. 长沙: 湖南省地质调查院, 2004. |
[38] | Rock, N.M.S., Bowes, D.R., Wright, A.E. (1991) Lamprophyres. Black-ie, Glasgow, 1-285. |
[39] | 路凤香, 舒小辛, 赵崇贺. 有关煌斑岩分类的建议[J]. 地质科技情报, 1991(s1): 55-62. |
[40] | Lefebvre, N., Kopylova, M. and Kivi, K. (2005) Archean Calc-Alkaline Lamprophyres of Wawa, Ontario, Can-ada: Unconventional Diamondiferous Volcaniclastic Rocks. Precambrian Research, 138, 57-87.
https://doi.org/10.1016/j.precamres.2005.04.005 |
[41] | Rock, N.M.S. (1990) Lamprophyres. Blackie, Glasgow and Lon-don, 77-156. |
[42] | Langmuir, C.H., Vocke Jr., R.D., Hanson, G.N. and Hart, S.R. (1978) A General Mixing Equation with Applications to Icelandic Basalts. Earth and Planetary Science Letters, 37, 380-392. https://doi.org/10.1016/0012-821X(78)90053-5 |
[43] | Sun, S.S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D. and Norry, M.J., Eds., Magmatism in the Ocean Basins, Vol. 42, Geological Society, London, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
[44] | Mllnker, C. (1998) Nb/Ta Fractionation in a Cambrian Arc/Back System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144, 23-45.
https://doi.org/10.1016/S0009-2541(97)00105-8 |
[45] | Ormerod, D.S., Hawkesworth, C.J., Rogers, N.W., Leeman, W.P. and Menzies, M.A. (1988) Tectonic and Magmatic Transitions in the Western Great Basin. Nature, 333, 349-353. https://doi.org/10.1038/333349a0 |
[46] | Roeder, P.L. and Emslie, R.F. (1970) Olivine-Liquid Equilibrium. Contributions to Mineralogy & Petrology, 29, 275-289. https://doi.org/10.1007/BF00371276 |
[47] | Rudnick, R.L. and Gao, S. (2014) Composition of the Continental Crust. In: Holland, H.D. and Turekian, K.K., Treatise on Geochemistry. 2nd Edition, Elsevi-er-Pergamon, Oxford, 1-45.
https://doi.org/10.1016/B978-0-08-095975-7.00301-6 |
[48] | 陈道公, 支霞臣, 杨海涛. 地球化学[M]. 第2版. 合肥: 中国科学技术大学出版社, 2009: 163-218. |
[49] | Ma, L., Jiang, S.Y., Hou, M.L., Dai, B.-Z., Jiang, Y.-H., Yang, T., et al. (2014) Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithos-pheric Evolution of the Eastern North China Craton. Gondwana Research, 25, 859-872. https://doi.org/10.1016/j.gr.2013.05.012 |
[50] | Frey, F.A., Green, D.H. and Roy, S.D. (1978) Integrates Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19, 463-513. https://doi.org/10.1093/petrology/19.3.463 |
[51] | Pearce, J.A. and Norry, M.J. (1979) Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy & Petrology, 69, 33-47. https://doi.org/10.1007/BF00375192 |
[52] | Meschede, M. (1986) A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56, 207-218.
https://doi.org/10.1016/0009-2541(86)90004-5 |
[53] | Rogers, N.W. (1992) Potassic Magmatism as a Key to Trace-Element Enrichment Processes in the Upper Mantle. Journal of Volcanology and Geothermal Reseach, 50, 85-99. https://doi.org/10.1016/0377-0273(92)90038-F |
[54] | 盛丹, 陈剑锋, 陈小兰, 符金豪. 湖南道县虎子岩地区二长花岗岩的锆石U-Pb年代学特征、地球化学特征及其地质意义[J]. 国土资源导刊, 2015(3): 1-8. |
[55] | Dai, B.Z., Jiang, S.Y., Jiang, Y.H., Zhao, K.-Do. and Liu, D.-Y. (2008) Geochronology, Geochemistry and Hf-Sr-Nd Isotopic Compositions of Hu-ziyan Mafic Xenoliths, Southern Hunan Province, South China: Petrogenesis and Implications for Lower Crust Evolution. Li-thos, 102, 65-87. https://doi.org/10.1016/j.lithos.2007.08.010 |
[56] | 郭锋, 范蔚茗, 林舸, 林源贤. 湖南道县辉长岩包体的年代学研究及成因探讨[J]. 科学通报, 1997, 42(15): 1661-1664. https://doi.org/10.1360/csb1997-42-15-1661 |
[57] | Li, X.H., Chung, S.L, Zhou, H.W., Lo, C.-H., Liu, Y. and Chen, C.-H. (2004) Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China. Geological Society, London, Special Publications, 226, 193-215.
https://doi.org/10.1144/GSL.SP.2004.226.01.11 |