|
Au@WP5光电化学传感器的制备及其对牛血红蛋白的分析应用
|
Abstract:
目的:本研究将水溶性柱[5]芳烃(WP5)修饰在金纳米粒子(Au nanoparticles, AuNPs)表面,作为复合材料修饰玻碳电极(GCE),建立了一种检测牛血红蛋白的光电化学传感方法。利用Au NPs在可见光照下的局域表面等离子共振效应,WP5与多巴胺(DA)的主客体络合作用,及这二者的协同作用,检测溶液中的多巴胺。由于多巴胺与牛血红蛋白(BHb)的吸附作用,向DA中依次滴加不同浓度的牛血红蛋白。随着牛血红蛋白的加入,多巴胺产生的电信号会减弱,从而达到对牛血红蛋白的间接性检测。结果表明,在牛血红蛋白的浓度为10?11~10?4 mg/mL浓度范围内,阳极峰电流密度与牛血红蛋白的浓度呈较好的线性关系,检出限为5.2 × 10?12 mg/mL (S/N = 3)。
Purpose: In this study, a water-soluble pillar[5] arenes (WP5) were modified on the surface of gold nanoparticles (Au nanoparticles, Au NPs) as a composite material modified glassy carbon electrode (GCE), and their photoelectrochemical sensor was established for detecting bovine hemoglobin. The enhanced photocurrent signal benefited from the localized surface plasmon resonanc (LSPR) effect of Au, the host-guest complexation between WP5 and DA. With the addition of bovine hemoglobin, the electrical signal produced by dopamine will be weakened, so as to achieve indirect detection of bovine hemoglobin. The PEC immunosensor showed a specifically recognize toward BHb with a wide detection range of 1.0 × 10?11 to 10?4 mg/mL and a detection limit of 5.2 × 10?12 mg/mL (S/N = 3).
[1] | Scheller, F.W., Bistolas, N., Liu, S.Q., Michael, J., Martin, K. and Ulla, W. (2005) Thirty Years of Haemoglobin Electrochemistry. Advances in Colloid and Interface Science, 116, 111-120. https://doi.org/10.1016/j.cis.2005.05.006 |
[2] | Hoban, M.D., Orkin, S.H. and Bauer, D.E. (2016) Genetic Treatment of a Molecular Disorder: Gene Therapy Approaches to Sickle Cell Disease. Blood, 127, 839-848. https://doi.org/10.1182/blood-2015-09-618587 |
[3] | Chuang, S.W., Rick, J. and Chou, T.C. (2009) Electrochemical Characterisation of a Conductive Polymer Molecularly Imprinted with an Amadori Compound. Biosensors and Bioelectronics, 24, 3170-3173.
https://doi.org/10.1016/j.bios.2009.02.033 |
[4] | Gavalas, M.V., Breskin, A., Yuzefpolskaya, M., Eisenberger, A., Castagna, F., Demmer, R.T., et al. (2017) Discriminatory Performance of Positive Urine Hemoglobin for Detection of Significant Hemolysis in Patients with Continuous-Flow Left Ventricular Assist Devices. The Journal of Heart and Lung Transplantation, 36, 59-63.
https://doi.org/10.1016/j.healun.2016.08.026 |
[5] | Li, R., Jiang, Q., Cheng, H.J., Zhang, G.Q., Zhen, M.M., Chen, D.Q., Ge, J.C., Mao, L.Q., Wang, C. and Shu, C.Y. (2014) G-Quadruplex DNAzymes-Induced Highly Selective and Sensitive Colorimetric Sensing of Free Heme in Rat Brain. Analyst, 139, 1993-1999. https://doi.org/10.1039/C3AN02025H |
[6] | Barati, A., Shamsipur, M. and Abdollahi, H. (2015) Hemoglobin Detection Using Carbon Dots as a Fluorescence Prob. Biosensors and Bioelectronics, 71, 470-475. https://doi.org/10.1016/j.bios.2015.04.073 |
[7] | Zhou, Y., Dong, H., Liu, L., Hao, Y., Chang, Z. and Xu, M. (2015) Hemoglobin Detection Using Carbon Dots as a Fluorescence Probe. Biosensors and Bioelectronics, 64, 442-475. |
[8] | Baghayeri, M., Rouhi, M., Lakouraj, M.M. and Amiri-Aref, M. (2017) Bioelectrocatalysis of Hydrogen Peroxide Based on Immobilized Hemoglobin onto Glassy Carbon Electrode Modified with Magnetic Poly(indole-co-thiophene) Nanocomposite. Journal of Electroanalytical Chemistry, 784, 69-76. https://doi.org/10.1016/j.jelechem.2016.12.006 |
[9] | Jiang, J. and Du, X. (2014) Sensitive Electrochemical Sensors for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Based on Au@Pd-Reduced Graphene Oxide Nanocomposites. Nanoscale, 6, 11303-11309.
https://doi.org/10.1039/C4NR01774A |
[10] | Yang, Y.J. and Li, W. (2014) CTAB Functionalized Graphene Oxide/Multiwalled Carbon Nanotube Composite Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Nitrite. Biosensors and Bioelectronics, 56, 300-306. https://doi.org/10.1016/j.bios.2014.01.037 |
[11] | Kang, Q., Wang, X.X., Ma, X.L., Kong, L.Q., Zhang, P. and Shen, D.Z. (2016) Sensitive Detection of Ascorbic Acid and Alkaline Phosphatase Activity by Double-Channel Photoelectrochemical Detection Design Based on g-C3N4/TiO2 Nanotubes Hybrid Film. Sensors and Actuators B: Chemical, 230, 231-241. https://doi.org/10.1016/j.snb.2016.02.059 |
[12] | Yao, Y., Xue, M., Chen, J., Zhang, M. and Huang, F.J. (2012) An Amphiphilic Pillar[5]arene: Synthesis, Controllable Self-Assembly in Water, and Application in Calcein Release and TNT Adsorption. Journal of the American Chemical Society, 134, 15712-15715. https://doi.org/10.1021/ja3076617 |
[13] | Zhao, G.F., Ran, X., Zhou, X., Tan, X., Lei, H., Xie, X.G., Yang, L. and Du, G.B. (2018) Green Synthesis of Hydroxylatopillar[5]arene-Modified Gold Nanoparticles and Their Self-Assembly, Sensing, and Catalysis Applications. ACS Sustainable Chemistry & Engineering, 6, 3938-3947. https://doi.org/10.1021/acssuschemeng.7b04292 |
[14] | Ofir, Y., Samanta, B. and Rotello, V.M. (2008) Polymer and Biopolymer Mediated Self-Assembly of Gold Nanoparticles. Chemical Society Reviews, 37, 1814-1825. https://doi.org/10.1039/b712689c |
[15] | Hassenkam, T., Moth-Poulsen, K. and Stuhr-Hansen, N.L. (2004) Self-Assembly and Conductive Properties of Molecularly Linked Gold Nanowires. Nano Letters, 4, 19-22. https://doi.org/10.1021/nl034752d |
[16] | Dreaden, E.C., Alkilany, A.M. and Huang, X.H. (2012) The Golden Age: Gold Nanoparticles for Biomedicine. Chemical Society Reviews, 41, 2740-2779. https://doi.org/10.1039/C1CS15237H |
[17] | Siwy, Z., Trofin, L. and Kohli, P. (2005) Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127, 5000-5001. https://doi.org/10.1021/ja043910f |
[18] | Chen, M.S. and Goodman, D.W. (2008) Catalytically Active Gold on Ordered Titania Supports. Chemical Society Reviews, 37, 1860-1870. https://doi.org/10.1039/b707318f |
[19] | Zhang, H., Zhang, W.Y., Gao, X., Man, P.H., Sun, Y., Liu, C.D., Li, Z., Man, B.Y. and Yang, C. (2019) Formation of the AuNPs/GO@MoS2/AuNPs Nanostructures for the SERS Application. Sensors and Actuators B: Chemical, 282, 809-817. https://doi.org/10.1016/j.snb.2018.10.095 |
[20] | Li, H., Chen, D.X., Sun, Y.L., Zheng, Y.B., Tan, L.L., Weiss, P.S. and Yang, Y.W. (2013) Viologen-Mediated Assembly of and Sensing with Carboxylatopillar[5]arene-Modified Gold Nanoparticles. Journal of the American Chemical Society, 135, 1570-1576. https://doi.org/10.1021/ja3115168 |
[21] | Tan, X.P., Zhang, Z, Cao, T.W., Zeng, W.J., Huang, T. and Zhao, G.F. (2019) Control Assembly of Pillar[6]arene-Modified Ag Nanoparticles on Covalent Organic Framework Surface for Enhanced Sensing Performance toward Paraquat. ACS Sustainable Chemistry & Engineering, 7, 20051-20059. https://doi.org/10.1021/acssuschemeng.9b05804 |
[22] | Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T.A. and Nakamoto, Y. (2008) Para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5523. https://doi.org/10.1021/ja711260m |
[23] | Xia, D.Y., Wang, P., Ji, X.F., Khashab, N.M., Sessler, J.L. and Huang, F.H. (2020) Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. Chemical Reviews, 120, 6070-6123. https://doi.org/10.1021/acs.chemrev.9b00839 |
[24] | Chen, J., Wang, Y., Wang, C.W., Long, R., Chen, T.T. and Yao, Y. (2019) Functionalization of Inorganic Nanomaterials with Pillar[n]arenes. Chemical Communications, 55, 6817-6826. https://doi.org/10.1039/C9CC03165K |
[25] | Ogoshi, T., Hashizume, M., Yamagishi, T.-A. and Nakamoto, Y. (2010) Synthesis, Conformational and Host-Guest Properties of Water-Soluble Pillar[5]arene. Chemical Communications, 46, 3703-3710.
https://doi.org/10.1039/c0cc00348d |
[26] | Yao, Y., Xue, M. and Chi, X.D. (2012) A New Water-Soluble Pillar[5]arene: Synthesis and Application in the Preparation of Gold Nanoparticles. Chemical Communications, 48, 6505-6507. https://doi.org/10.1039/c2cc31962d |
[27] | She, X., Xu, H., Xu, Y., Yan, J., Xia, J. and Xu, L. (2014) Exfoliated Graphene-Like Carbon Nitride in Organic Solvents: Enhanced Photocatalytic Activity and Highly Selective and Sensitive Sensor for the Detection of Trace Amounts of Cu2+. Journal of Materials Chemistry A, 2, 2563-2570. https://doi.org/10.1039/c3ta13768f |
[28] | Yang, B., Wang, J., Bin, D., Zhu, M., Yang, P. and Du, Y. (2015) A Three Dimensional Pt Nanodendrite/Graphene/MnO2 Nanoflower Modified Electrode for the Sensitive and Selective Detection of Dopamine. Journal of Materials Chemistry B, 3, 7440-7448. https://doi.org/10.1039/C5TB01031D |
[29] | Wang, J., Lu, C., Chen, T.T., Hu, L.P., Du, Y.K., Yao, Y. and Goh, M.C. (2020) Simply Synthesized Nitrogen-Doped Graphene Quantum Dot (NGQD)-Modified Electrode for the Ultrasensitive Photoelectrochemical Detection of Dopamine. Nanophotonics, 9, 3831-3839. https://doi.org/10.1515/nanoph-2019-0418 |
[30] | Sharma, S., Joshi, P., Mehtab, S., et al. (2020) Development of Non-Enzymatic Cholesterol Electrochemical Sensor Based Onpolyindole/Tungsten Carbide Nanocomposite. Journal of Analysis and Testing, 4, 13-22.
https://doi.org/10.1007/s41664-020-00117-0 |
[31] | Chen, M., Ning, Z., Chen, K., et al. (2020) Recent Advances of Electrochemiluminescent System in Bioassay. Journal of Analysis and Testing, 4, 57-75. https://doi.org/10.1007/s41664-020-00136-x |