|
低自旋(S = 1/2)过渡金属配合物的慢磁弛豫
|
Abstract:
[1] | Sessoli, R., Gatteschi, D., Caneschi, A., et al. (1993) Magnetic Bistability in a Metal-Ion Cluster. Nature, 365, 141-143.
https://doi.org/10.1038/365141a0 |
[2] | Leuenberger, M.N. and Loss, D. (2001) Quantum Computing in Molecular Magnets. Nature, 410, 789-793.
https://doi.org/10.1038/35071024 |
[3] | Bogani, L. and Wernsdorfer, W. (2008) Molecular Spintronics Using Sin-gle-Molecule Magnets. Nature Materials, 7, 179-186. https://doi.org/10.1038/nmat2133 |
[4] | Wernsdorfer, W. and Sessoli, R. (1999) Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science, 284, 133-135. https://doi.org/10.1126/science.284.5411.133 |
[5] | Ribas, J. (2008) Coordination Chemistry. Wiley-VCH, Wein-heim. |
[6] | Atzori, M., Morra, E., Tesi, L., et al. (2016) Quantum Coherence Times Enhancement in Vanadi-um(IV)-Based Potential Molecular Qubits: The Key Role of the Vanadyl Moiety. Journal of the American Chemical So-ciety, 138, 11234-11244. https://doi.org/10.1021/jacs.6b05574 |
[7] | Atzori, M., Tesi, L., Morra, E., et al. (2016) Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Mo-lecular Spin Qubits. Journal of the American Chemical Society, 138, 2154-2157. https://doi.org/10.1021/jacs.5b13408 |
[8] | Graham, M.J., Zadrozny, J.M., Shiddiq, M., et al. (2014) Influence of Electronic Spin and Spin-Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes. Journal of the American Chemical Society, 136, 7623-7626.
https://doi.org/10.1021/ja5037397 |
[9] | Bader, K., Dengler, D., Lenz, S., et al. (2014) Room Temperature Quantum Coherence in a Potential Molecular Qubit. Nature Communications, 5, 5304. https://doi.org/10.1038/ncomms6304 |
[10] | Bennett, C.H. and DiVincenzo, D.P. (2000) Quantum Information and Computation. Nature, 404, 247-255.
https://doi.org/10.1038/35005001 |
[11] | Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quan-tum Information. Cambridge University Press, Cambridge. |
[12] | Aromi, G., Aguila, D., Gamez, P., et al. (2012) Design of Magnetic Coordination Complexes for Quantum Computing. Chemical Society Reviews, 41, 537-546. https://doi.org/10.1039/C1CS15115K |
[13] | Sato, K., Nakazawa, S., Rahimi, R., et al. (2019) Molecular Elec-tron-Spin Quantum Computers and Quantum Information Processing: Pulse-Based Electron Magnetic Resonance Spin Technology Applied to Matter Spin-Qubits. Journal of Materials Chemistry, 19, 3739-3754. https://doi.org/10.1039/b819556k |
[14] | Lehmann, J., Gaita-Ari Nmacr, A., Coronado, E., et al. (2007) Spin Qubits with Electrically Gated Polyoxometalate Molecules. Nature Nanotechnology, 2, 312-317. https://doi.org/10.1038/nnano.2007.110 |
[15] | Shrivastava, K.N. (1983) Theory of Spin-Lattice Relaxation. Physica Status Solidi B, 117, 437-458.
https://doi.org/10.1002/pssb.2221170202 |
[16] | Tesi, L., Lucaccini, E., Cimatti, I., et al. (2016) Quantum Coherence in a Process Able Vanadyl Complex: New Tools for the Search of Molecular Spin Qubits. Chemical Science, 7, 2074-2083. https://doi.org/10.1039/C5SC04295J |
[17] | Ding, M., Cutsail III, G.E., Aravena, D., et al. (2016) A Low Spin Manganese(IV) Nitride Single Molecule Magnet. Chemical Science, 7, 6132-6140. https://doi.org/10.1039/C6SC01469K |
[18] | Buades, A.B., Arderiu, V.S., Maxwell, L., et al. (2019) Slow-Spin Re-laxation of a Low-Spin S = 1/2 FeIII Carborane Complex. Chemical Communications, 55, 3825-3828. https://doi.org/10.1039/C9CC01123D |
[19] | Cui, H.H., Wang, J., Chen, X.T., et al. (2017) Slow Magnetic Relaxa-tion in Five-Coordinate Spin-Crossover Cobalt(II) Complexes. Chemical Communications, 53, 9304-9307. https://doi.org/10.1039/C7CC04785A |
[20] | Chen, L., Song, J., Zhao, W., et al. (2018) A Mononuclear Five-Coordinate Co(II) Single Molecule Magnet with a Spin Crossover between the S = 1/2 and 3/2 States. Dalton Transactions, 47, 16596-16602.
https://doi.org/10.1039/C8DT03783C |
[21] | Poulten, R.C., Page, M.J., Algarra, A.G., et al. (2013) Synthesis, Elec-tronic Structure, and Magnetism of [Ni(6-Mes)2]+: A Two-Coordinate Nickel(I) Complex Stabilized by Bulky N-Heterocyclic Carbenes. Journal of the American Chemical Society, 135, 13640-13643. https://doi.org/10.1021/ja407004y |
[22] | Lin, W., Bodenstein, T., Mereacre, V., et al. (2016) Field-Induced Slow Magnetic Relaxation in the Ni(I) Complexes [NiCl(PPh3)2]?C4H8O and [Ni(N(SiMe3)2)(PPh3)2]. Inorganic Chemistry, 55, 2091.
https://doi.org/10.1021/acs.inorgchem.5b02497 |
[23] | Bhowmick, I., Roehl, A.J., Neilson, J.R., et al. (2018) Slow Magnetic Relaxation in Octahedral Low-Spin Ni(III) Complexes. Chemical Science, 9, 6564-6571. https://doi.org/10.1039/C7SC04482H |
[24] | Bo?a, R., Rajnák, C., Titi?, J., et al. (2017) Field Supported Slow Mag-netic Relaxation in a Mononuclear Cu(II) Complex. Inorganic Chemistry, 56, 1478-1482. https://doi.org/10.1021/acs.inorgchem.6b02535 |
[25] | Wu, S.Q., Miyazaki, Y., Nakano, M., et al. (2017) Slow Magnetic Relaxation in a Mononuclear Ruthenium(III) Complex. Chemistry—A European Journal, 23, 10028-10033. https://doi.org/10.1002/chem.201702047 |
[26] | Pedersen, K.S., Bendix, J., Tressaud, A., et al. (2016) Iridates from the Molecular Side. Nature Communications, 7, Article No. 12195. https://doi.org/10.1038/ncomms12686 |