全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低自旋(S = 1/2)过渡金属配合物的慢磁弛豫
Slow Magnetic Relaxation in Low-Spin (S = 1/2) Transition Metal Complexes

DOI: 10.12677/NAT.2021.113022, PP. 191-199

Keywords: 过渡金属,低自旋,慢磁弛豫,弛豫机理, Low-Spin, Slow Magnetic Relaxation, Relaxation Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着单离子磁体的蓬勃发展,研究人员发现即使当配合物的基态自旋为低自旋(S = 1/2),仍可以表现慢磁弛豫行为。这类配合物在量子信息处理方面(QIP)方面具有较大的应用潜能,因此得到了众多研究者的关注。对于过渡金属配合物,配体的选择影响中心金属离子的电子结构,进而影响其慢磁弛豫行为及量子相干性质。本文结合近年来的研究成果,对低自旋配合物的慢磁弛豫行为进行了阐述,分析了其弛豫行为来源,并对弛豫机理进行总结,为量子比特的设计提供思路。
With the rapid development of single ion magnets, researchers found that a few of complexes even with low-spin (
S = 1/2) ground state spin can still exhibit slow magnetic relaxation behavior. Owing to their great potential in quantum information processing (QIP), these complexes have attracted many researchers’ attention. For transition metal complexes, the ligands coordinating to the transition metals have great impact on the electronic structure of central metal ions, and then significantly affect the slow magnetic relaxation behavior and quantum coherence properties. Based on the recent research, this paper describes the slow magnetic relaxation behavior in low-spin complexes. Moreover, we have analyzed the origin of the relaxation behavior and summarized the relaxation mechanism in these complexes, which will provide new routes in the design of quantum qubit.

References

[1]  Sessoli, R., Gatteschi, D., Caneschi, A., et al. (1993) Magnetic Bistability in a Metal-Ion Cluster. Nature, 365, 141-143.
https://doi.org/10.1038/365141a0
[2]  Leuenberger, M.N. and Loss, D. (2001) Quantum Computing in Molecular Magnets. Nature, 410, 789-793.
https://doi.org/10.1038/35071024
[3]  Bogani, L. and Wernsdorfer, W. (2008) Molecular Spintronics Using Sin-gle-Molecule Magnets. Nature Materials, 7, 179-186.
https://doi.org/10.1038/nmat2133
[4]  Wernsdorfer, W. and Sessoli, R. (1999) Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science, 284, 133-135.
https://doi.org/10.1126/science.284.5411.133
[5]  Ribas, J. (2008) Coordination Chemistry. Wiley-VCH, Wein-heim.
[6]  Atzori, M., Morra, E., Tesi, L., et al. (2016) Quantum Coherence Times Enhancement in Vanadi-um(IV)-Based Potential Molecular Qubits: The Key Role of the Vanadyl Moiety. Journal of the American Chemical So-ciety, 138, 11234-11244.
https://doi.org/10.1021/jacs.6b05574
[7]  Atzori, M., Tesi, L., Morra, E., et al. (2016) Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Mo-lecular Spin Qubits. Journal of the American Chemical Society, 138, 2154-2157.
https://doi.org/10.1021/jacs.5b13408
[8]  Graham, M.J., Zadrozny, J.M., Shiddiq, M., et al. (2014) Influence of Electronic Spin and Spin-Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes. Journal of the American Chemical Society, 136, 7623-7626.
https://doi.org/10.1021/ja5037397
[9]  Bader, K., Dengler, D., Lenz, S., et al. (2014) Room Temperature Quantum Coherence in a Potential Molecular Qubit. Nature Communications, 5, 5304.
https://doi.org/10.1038/ncomms6304
[10]  Bennett, C.H. and DiVincenzo, D.P. (2000) Quantum Information and Computation. Nature, 404, 247-255.
https://doi.org/10.1038/35005001
[11]  Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quan-tum Information. Cambridge University Press, Cambridge.
[12]  Aromi, G., Aguila, D., Gamez, P., et al. (2012) Design of Magnetic Coordination Complexes for Quantum Computing. Chemical Society Reviews, 41, 537-546.
https://doi.org/10.1039/C1CS15115K
[13]  Sato, K., Nakazawa, S., Rahimi, R., et al. (2019) Molecular Elec-tron-Spin Quantum Computers and Quantum Information Processing: Pulse-Based Electron Magnetic Resonance Spin Technology Applied to Matter Spin-Qubits. Journal of Materials Chemistry, 19, 3739-3754.
https://doi.org/10.1039/b819556k
[14]  Lehmann, J., Gaita-Ari Nmacr, A., Coronado, E., et al. (2007) Spin Qubits with Electrically Gated Polyoxometalate Molecules. Nature Nanotechnology, 2, 312-317.
https://doi.org/10.1038/nnano.2007.110
[15]  Shrivastava, K.N. (1983) Theory of Spin-Lattice Relaxation. Physica Status Solidi B, 117, 437-458.
https://doi.org/10.1002/pssb.2221170202
[16]  Tesi, L., Lucaccini, E., Cimatti, I., et al. (2016) Quantum Coherence in a Process Able Vanadyl Complex: New Tools for the Search of Molecular Spin Qubits. Chemical Science, 7, 2074-2083.
https://doi.org/10.1039/C5SC04295J
[17]  Ding, M., Cutsail III, G.E., Aravena, D., et al. (2016) A Low Spin Manganese(IV) Nitride Single Molecule Magnet. Chemical Science, 7, 6132-6140.
https://doi.org/10.1039/C6SC01469K
[18]  Buades, A.B., Arderiu, V.S., Maxwell, L., et al. (2019) Slow-Spin Re-laxation of a Low-Spin S = 1/2 FeIII Carborane Complex. Chemical Communications, 55, 3825-3828.
https://doi.org/10.1039/C9CC01123D
[19]  Cui, H.H., Wang, J., Chen, X.T., et al. (2017) Slow Magnetic Relaxa-tion in Five-Coordinate Spin-Crossover Cobalt(II) Complexes. Chemical Communications, 53, 9304-9307.
https://doi.org/10.1039/C7CC04785A
[20]  Chen, L., Song, J., Zhao, W., et al. (2018) A Mononuclear Five-Coordinate Co(II) Single Molecule Magnet with a Spin Crossover between the S = 1/2 and 3/2 States. Dalton Transactions, 47, 16596-16602.
https://doi.org/10.1039/C8DT03783C
[21]  Poulten, R.C., Page, M.J., Algarra, A.G., et al. (2013) Synthesis, Elec-tronic Structure, and Magnetism of [Ni(6-Mes)2]+: A Two-Coordinate Nickel(I) Complex Stabilized by Bulky N-Heterocyclic Carbenes. Journal of the American Chemical Society, 135, 13640-13643.
https://doi.org/10.1021/ja407004y
[22]  Lin, W., Bodenstein, T., Mereacre, V., et al. (2016) Field-Induced Slow Magnetic Relaxation in the Ni(I) Complexes [NiCl(PPh3)2]?C4H8O and [Ni(N(SiMe3)2)(PPh3)2]. Inorganic Chemistry, 55, 2091.
https://doi.org/10.1021/acs.inorgchem.5b02497
[23]  Bhowmick, I., Roehl, A.J., Neilson, J.R., et al. (2018) Slow Magnetic Relaxation in Octahedral Low-Spin Ni(III) Complexes. Chemical Science, 9, 6564-6571.
https://doi.org/10.1039/C7SC04482H
[24]  Bo?a, R., Rajnák, C., Titi?, J., et al. (2017) Field Supported Slow Mag-netic Relaxation in a Mononuclear Cu(II) Complex. Inorganic Chemistry, 56, 1478-1482.
https://doi.org/10.1021/acs.inorgchem.6b02535
[25]  Wu, S.Q., Miyazaki, Y., Nakano, M., et al. (2017) Slow Magnetic Relaxation in a Mononuclear Ruthenium(III) Complex. Chemistry—A European Journal, 23, 10028-10033.
https://doi.org/10.1002/chem.201702047
[26]  Pedersen, K.S., Bendix, J., Tressaud, A., et al. (2016) Iridates from the Molecular Side. Nature Communications, 7, Article No. 12195.
https://doi.org/10.1038/ncomms12686

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133