|
不锈钢片阳极电芬顿技术降解氯化苄研究
|
Abstract:
以不锈钢为阳极和石墨为阴极,自制电-Fenton体系降解氯化苄模拟废水。研究30%H2O2投加浓度、初始pH值、电流密度、电解时间等影响因素,确定氯化苄最佳去除条件及其去除率。氯化苄浓度采用气相色谱法测定。结果表明,初始pH为3、电流密度为3 mA/cm2、电解时间为40 min,30%H2O2投加浓度30%时,氯化苄去除率达70%以上。不锈钢阳极的电-Fenton法降解氯化苄,环保节能,设备简单,操作方便,性能稳定,为难降解污染物处理提供新思路。
The degradation of benzyl chloride in simulated wastewater was studied by using a self-made elec-tron-Fenton system device with stainless steel sheets as anode and graphite as cathode. The factor experiments were carried out to adjust the influence of initial H2O2 dosage, initial pH value, current density and electrolysis time on the degradation of benzyl chloride, the best degradation conditions and degradation rate of benzyl chloride were determined. The concentration of benzyl chloride was determined by gas chromatography. The results of factor experiment show that when the initial pH is 3, the current density is 3 mA/cm2, the electrolysis time is 40 min, and the concentration of 30%H2O2 is 30%, the degradation effect is the best and more than 70%. Electro-Fenton system de-vice with stainless steel sheets as anode for the degradation of benzyl chloride is simple, the opera-tion is convenient, and the performance of electrolysis system is stable, and providing new idea for the degradation of refractory organic pollutants.
[1] | 张斌, 罗子扬, 王凤鑫, 等. 模拟太阳光Fenton法催化降解氯化苄研究[J]. 化学与黏合, 2018, 40(1): 34-37+57. |
[2] | 年立春. 氯化物车间废水治理的措施[J]. 中国氯碱, 2012(12): 37-38. |
[3] | 姜宸, 濮文虹, 杨昌柱, 等. 连续流中好氧颗粒污泥处理氯化苄生产废水[J]. 水处理技术, 2017, 43(8): 58-62. |
[4] | 孙嘉琦, 张婷婷, 杜亚倩, 等. 还原氧化石墨烯/二氧化钛于模拟太阳光下催化降解氯化苄的研究[J]. 广东化工, 2017, 44(15): 7-9+46. |
[5] | 赵庆良, 黄慧彬, 丁晶, 等. 电Fenton技术的研究现状及应用进展[J]. 工业水处理, 2018, 38(2): 6-11. |
[6] | Huo, X.L., Qi, J.F., He, K.C., et al. (2020) Stainless Steel Sheets as the Substrate of Disposable Electrochemical Sensors for Analysis of Heavy Metals or Biomolecules. Analytica Chimica Acta, 1124, 32-39.
https://doi.org/10.1016/j.aca.2020.05.018 |
[7] | Kitte, S.A., Li, S.P., Nsabimana, A., et al. (2019) Stainless Steel Electrode for Simultaneous Stripping Analysis of Cd(II), Pb(II), Cu(II) and Hg(II). Talanta, 191, 485-490. https://doi.org/10.1016/j.talanta.2018.08.066 |
[8] | Kitte, S.A., Gao, W., Zholudov, Y.T., et al. (2017) Stainless Steel Electrode for Sensitive luminal Electrochemiluminescent detection of H2O2, Glucose, and Glucose Oxidase Activity. Analytical Chemistry, 89, 9864-9869.
https://doi.org/10.1021/acs.analchem.7b01939 |
[9] | 黄进. 气相色谱法在废水分析中的应用[J]. 四川轻化工学院学报, 2004(2): 83-89. |
[10] | 祝方, 欧文波, 程畅, 等. 牺牲阳极电Fenton法对垃圾渗滤液的降解[J]. 环境化学, 2013, 32(10): 1937-1942. |
[11] | 杨建涛. 电-Fenton法处理苯酚废水实验研究[D]: [硕士学位论文]. 兰州: 西北师范大学, 2010. |
[12] | Ganzenko, O., Trellu, C., Oturan, N., et al. (2020) Electro-Fenton Treatment of a Complex Pharmaceutical Mixture: Mineralization Efficiency and Biodegradability Enhancement. Chemosphere, 253, 47-51.
https://doi.org/10.1016/j.chemosphere.2020.126659 |
[13] | Yu, X.F., Fu, W.N., Jiang, M.H., et al. (2020) Automatic Microbial Electro-Fenton System Driven by Transpiration for Degradation of Acid Orange 7. The Science of the Total Environment, 725, 67-69.
https://doi.org/10.1016/j.scitotenv.2020.138508 |
[14] | 张锋. 电芬顿法降解苯酚废水的研究[J]. 广州化工, 2014, 42(10): 116-117+141. |