全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于形态学和轮廓识别的车牌定位
License Plate Location Based on Morphology and Contour Recognition

DOI: 10.12677/SEA.2021.104058, PP. 542-548

Keywords: 车牌定位,车牌识别系统,数学形态学,轮廓识别
License Plate Location
, License Plate Recognition System, Mathematical Morphology, Contour Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

车牌定位作为车牌识别系统的关键步骤,其定位效果与后续车牌字符分割和识别密切相关,本文对传统方法进行了改进,提出了一种新的车牌定位方法,将数学形态学和轮廓识别相结合,解决了传统定位方法形式单一、易受拍摄环境的影响且识别率不高等问题。通过形态学进行车牌的粗定位;在此基础上查找轮廓,并以宽高比、矩形度作为特征进行轮廓筛选,实现精确定位;最后通过倾斜校正、截取优化,即可输出只包含完整车牌区域的图像。实验结果表明该方法大大提高了车牌的定位准确率,达到了预期效果。
License plate location is a key step of the license plate recognition system, and its positioning effect is closely related to the subsequent segmentation and recognition of license plate characters. This article improves the traditional method and proposes a new license plate location method that combines mathematical morphology and contour recognition. It solves the problems of single form of traditional positioning method, easy to be affected by the shooting environment and low recog-nition rate. Carry out the rough positioning of the license plate through morphology; on this basis, find the contour, and use the aspect ratio and rectangularity as features to filter the contour to achieve precise positioning; finally, through tilt correction and interception optimization, the out-put contains only the complete license plate area image. Experimental results show that compared with the traditional method and this method greatly improves the positioning accuracy of the li-cense plate and achieves the expected effect.

References

[1]  杨人豪, 任斌. 基于颜色特征和边缘检测的车牌识别算法[J]. 工业控制计算机, 2021, 34(4): 100-103.
[2]  张松兰. 车牌识别系统算法综述[J]. 电子技术与软件工程, 2021(4): 128-130.
[3]  王涛, 全书海. 基于改进Sobel算子的车牌定位方法[J]. 微计算机信息, 2008, 4(13): 312-314.
[4]  莫之剑, 范彦斌, 彭明仔. 基于3D机器视觉动力电池焊缝质量检测方法[J]. 机电工程技术, 2020, 49(4): 1-3+95.
[5]  赵昭, 陈勇, 汪海燕. 形态学滤波器结构元素选取原则研究[C]//中国高等学校电力系统及其自动化专业第二十四届学术年会. 中国高等学校电力系统及其自动化专业第二十四届学术年会论文集: 2008年卷. 北京: 中国农业大学, 2008: 1870-1874.
[6]  王佳楠, 江佳齐, 单家元. 一种网格背景下的高精度靶标识别检测方法[P]. 中国专利, CN201910334915.9. 2019-09-06.
[7]  漆世钱. 基于轮廓识别和BGR颜色空间的车牌定位[J]. 计算机技术与发展, 2020, 30(12): 176-180.
[8]  杨莉. 基于OpenCV的车牌识别系统研究与实现[D]: [硕士学位论文]. 长沙: 湖南大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133