全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

郑州市2020年PM2.5和O3污染特征及其驱动因素分析
The Pollution Characteristics and Their Driving Factors of PM2.5 and O3 in Zhengzhou of 2020

DOI: 10.12677/AEP.2021.114084, PP. 730-739

Keywords: 郑州,地理探测器,驱动因素
Zhengzhou
, Geodetector, Driving Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

PM2.5和O3是大气污染研究的重要内容,基于2020年郑州市自然气象和社会经济数据,本文分析了PM2.5和O3污染特征,并借助地理探测器探讨影响污染物浓度的驱动因素。郑州市2020年PM2.5和O3污染表现出明显的季节性,PM2.5污染主要分布在空气污染严重的秋冬季节,O3污染主要分布在空气质量优良的春夏季节。通过地理探测器分析自然气象因素和社会经济因素对污染物的影响表明:对PM2.5和O3浓度变化影响最大的前三位驱动因素分别是平均温度(0.39)、环境污染专用设备(0.37)、塑料制品(0.35)和平均温度(0.58)、露点(0.39)、塑料制品(0.31),任何两种因子的交互作用都要大于单一因子对污染物浓度变化的影响,露点和相对湿度交互后对PM2.5浓度变化的影响最大(0.61),平均温度和二产用电占比交互后对O3浓度变化的影响最大(0.73)。研究显示自然气象因素和社会经济因素交互效应,对郑州市2020年PM2.5和O3浓度的变化起重要作用。
PM2.5 and O3 are import contents of air pollution research. Based on the natural meteorological and socio-economic data of Zhengzhou in 2020, this paper analyzes the pollution characteristics of PM2.5 and O3 and discusses the driving factors affecting the concentrations of pollutants by using Geodetector. The concentrations of PM2.5 and O3 show obvious seasonal changes. PM2.5 pollution was mainly distributed in autumn and winter with serious air pollutions, and O3 pollution was mainly distributed in spring and summer with good air qualities. The results of Geodetector analyses in-dicate that the top three driving factors affecting the concentrations of PM2.5 and O3 were average temperature (0.39), special equipment for environmental pollution (0.37), plastic products (0.35) and average temperature (0.58), dew point (0.39), plastic products (0.31), respectively. The influ-ence of the interaction of any two factors on the change of pollutant concentration is greater than that of a single factor. The interaction of dew point and relative humidity has the greatest impact on the concentration change of PM2.5 (0.61), and the interaction of average temperature and the pro-portion of electricity consumption in secondary industry has the greatest impact on the concentra-tion change of O3 (0.73). Hence, the interaction of natural meteorological factors and socio-eco- nomic factors played an important role in the changes of PM2.5 and O3 concentrations in Zheng- zhou.

References

[1]  Zhang, R.Y., Wang, G.H., Guo, S., et al. (2015) Formation of Urban Fine Particulate Matter. Chemical Reviews, 115, 3803-3855.
https://doi.org/10.1021/acs.chemrev.5b00067
[2]  Song, C., Wu, L., Xie, Y., et al. (2017) Air Pollu-tion in China: Status and Spatiotemporal Variations. Environmental Pollution, 227, 334-347.
https://doi.org/10.1016/j.envpol.2017.04.075
[3]  Li, Y., An, J.L., Kajino, M., et al. (2015) Impacts of Additional HONO Sources on O3 and PM2.5 Chemical Coupling and Control Strategies in the Beijing-Tianjin-Hebei Region of China. Tellus B, 67, Article No. 23930.
https://doi.org/10.3402/tellusb.v67.23930
[4]  Xu, L.Z., Stuart, B., Chen, F., et al. (2017) Spatiotemporal Charac-teristics of PM2.5 and PM10 at Urban and Corresponding Background Sites in 23 Cities in China. Science of the Total Environment, 599-600, 2074-2084.
https://doi.org/10.1016/j.scitotenv.2017.05.048
[5]  中华人民共和国生态环境部. 2020中国生态环境状况公报[R]. 2021-05-26.
[6]  中华人民共和国生态环境部. 2019中国生态环境状况公报[R]. 2020-06-02.
[7]  Gao, J.J., Tian, H.Z., Cheng, K., et al. (2015) The Variation of Chemical Characteristics of PM2.5 and PM10 and Formation Causes during Two Haze Pollution Events in Urban Beijing, China. Atmospheric Environment, 107, 1-8.
https://doi.org/10.1016/j.atmosenv.2015.02.022
[8]  张小曳, 孙俊英, 王亚强, 等. 我国雾-霾成因及其治理的思考[J]. 科学通报, 2013, 58(13): 1178-1187.
[9]  Zhao, B., Zheng, H.T., Wang, S.X., et al. (2018) Change in House-Hold Fuels Dominates the Decrease in PM2.5 Exposure and Premature Mortality in China in 200-2015. Proceed-ings of the National Academy of Sciences, 115, 12401-12406.
https://doi.org/10.1073/pnas.1812955115
[10]  Tilmes, S., Kinnison, D.E., Garcia, R.R., et al. (2012) Impact of Very Short-Lived Halogens on Stratospheric Ozone Abundance and UV Radiation in a Geo-Engineered Atmosphere. Atmospheric Chemistry and Physics, 12, 10945-10955.
https://doi.org/10.5194/acp-12-10945-2012
[11]  Tang, H., Liu, G., Zhu, J., et al. (2013) Seasonal Variations in Surface Ozone as Influenced by Asian Summer Monsoon and Biomass Burning in Agricultural Fields of the Northern Yangtze River Delta. Atmospheric Research, 122, 67-76.
https://doi.org/10.1016/j.atmosres.2012.10.030
[12]  Meng, Z., Dabdub, D. and Seinfeld, J.H. (1997) Chemical Coupling between Atmospheric Ozone and Particulate Matter. Science, 277, 116-119.
https://doi.org/10.1126/science.277.5322.116
[13]  中国环境科学学会臭氧污染控制专业委员会. 中国大气臭氧污染防治蓝皮书(2020) [M]. 北京: 中环博宏, 2021.
[14]  陈慕白, 袁明浩, 林秋菊, 等. 郑州市PM2.5组分季节性特征及来源研究[J]. 中国环境监测, 2020(4): 61-68.
[15]  中华人民共和国生态环境部. 2018中国生态环境状况公报[R]. 2019-05-29.
[16]  中华人民共和国生态环境部. 2017中国生态环境状况公报[R]. 2018-05-31.
[17]  韩晋仙, 朱笑歌, 李建华. 郑州市空气环境质量变化研究[C]//中国环境科学学会科学技术年会. 北京: 国家图书馆出版社, 2019: 551-557.
[18]  于世杰, 尹沙沙, 张瑞芹, 等. 郑州市近地面臭氧污染特征及气象因素分析[J]. 中国环境监测, 2017, 33(4): 140-149.
[19]  余光明, 李法松, 韩铖. 安庆大气颗粒物污染外来输送轨迹及源区研究[J]. 长江流域资源与环境, 2017(12): 2111-2119.
[20]  陈刚, 刘佳媛, 皇甫延琦, 等. 合肥城区PM10及PM2.5季节污染特征及来源解析[J]. 中国环境科学, 2016, 36(7): 1938-1946.
[21]  Jia, J., Cheng, S.Y., Liu, L., et al. (207) An Integrated WRF-CAMx Modeling Approach for Impact Analysis of Implementing the Emergency PM2.5 Control Measures during Red Alerts in Beijing in December 2015. Aerosol and Air Quality Research, 17, 2491-2508.
https://doi.org/10.4209/aaqr.2017.01.0009
[22]  李璇, 聂滕, 齐珺, 等. 2013年1月北京市PM2.5区域来源解析[J]. 环境科学, 2015, 36(4): 1148-1153.
[23]  Shi, G.L., Tian, Y.Z., Zhang, Y.F., et al. (2011) Estimation of the Concentrations of Primary and Secondary Organic Carbon in Ambient Particulate Matter: Application of the CMB-Iteration Method. Atmospheric Environment, 45, 5692-5698.
https://doi.org/10.1016/j.atmosenv.2011.07.031
[24]  杨妍妍, 李金香, 梁云平, 等. 应用受体模型(CMB)对北京市大气PM2.5来源的解析研究[J]. 环境科学学报, 2015, 35(9): 2693-2700.
[25]  张亮, 朱彬, 高晋徽, 等. 长江三角洲夏季一次典型臭氧污染过程的模拟[J]. 环境科学, 2015, 36(11): 3981-3988.
[26]  章群英, 麻金继, 沈非, 李超. 安徽省冬季PM2.5污染来源及其成因分析[J]. 长江流域资源与环境, 2020, 29(12): 2737-2746.
[27]  Zhao, M.F., Huang, Z.S., Qiao, T., et al. (2015) Chemical Characterization, the Transport Pathways and Potential Sources of PM2.5 in Shanghai: Seasonal Variations. Atmospheric Research, 158-159, 66-78.
https://doi.org/10.1016/j.atmosres.2015.02.003
[28]  王浩, 高健, 李慧, 等. 2007-2014年北京地区PM2.5质量浓度变化特征[J]. 环境科学研究, 2016, 29(6): 783-790.
[29]  王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[30]  李江苏, 孟琳琳, 曹红梅, 等. 郑州市零售业空间格局及影响因素分析[J]. 地理与地理信息科学, 2021, 3(27): 50-58.
[31]  王银苹. 基于自发地理信息的城市住宅价格时空分析[D]: [硕士学位论文]. 开封: 河南大学, 2019.
[32]  赵宏波, 余涤非, 苗长虹, 等. 基于POI数据的郑州市文化设施的区位布局特征与影响因素研究[J]. 地理科学, 2018, 38(9): 1525-1534.
[33]  Jasaitis, D., Vasiliauskien, E.V., Chadyien, E.R., et al. (2016) Surface Ozone Concentration and Its Relationship with UV Radiation, Meteorological Parameters and Radon on the Eastern Coast of the Baltic Sea. Atmosphere, 7, 27.
https://doi.org/10.3390/atmos7020027
[34]  Wang, Y., Du, H., Xu, Y., et al. (2018) Temporal and Spatial Variation Relationship and Influence Factors on Surface Urban Heat Island and Ozone Pollution in the Yangtze River Delta, China. Science of the Total Environment, 631-632, 921-933.
https://doi.org/10.1016/j.scitotenv.2018.03.050
[35]  Wang, Z.B., Li, J.X. and Liang, L.W. (2020) Spatio-Temporal Evolution of Ozone Pollution and Its Influencing Factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environmental Pollution, 256, Article ID: 113419.
https://doi.org/10.1016/j.envpol.2019.113419
[36]  王玫, 郑有飞, 柳艳菊, 等. 京津冀臭氧变化特征及与气象要素的关系[J]. 中国环境科学, 2019, 39(7): 2689-2698.
[37]  曹庭伟, 吴锴, 康平, 等. 成渝城市群臭氧污染特征及影响因素分析[J]. 环境科学学报, 2018, 38(4): 1275-1284.
[38]  Wang, T., Xue, L., Brimblecombe, P., et al. (2016) Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Science of the Total Environment, 575, 1582-1596.
https://doi.org/10.1016/j.scitotenv.2016.10.081
[39]  陈雪萍, 咸龙, 巨天珍, 等. 基于OMI的宁夏臭氧时空分布特征及影响因素研究[J]. 生态与农村环境学报, 2019, 35(2): 167-173.
[40]  陆倩, 王国辉, 冯一淳, 等. 气象条件对承德市臭氧重污染天气的影响[J]. 生态与农村环境学报, 2019, 35(8): 992-999.
[41]  Chen, Z., Li, R., Chen, D., et al. (2019) Understanding the Causal Influence of Major Meteorological Factors on Ground Ozone Concentrations across China. Journal of Cleaner Production, 242, Article ID: 118498.
https://doi.org/10.1016/j.jclepro.2019.118498
[42]  黄小刚, 邵天杰, 赵景波, 等. 气象因素和前体物对中国东部O3浓度分布的影响[J]. 中国环境科学, 2019, 39(6): 35-44.
[43]  Li, J., Han, Z. and Zhang, R. (2014) Influence of Aerosol Hygroscopic Growth Parameterization on Aerosol Optical Depth and Direct Radiative Forcing over East Asia. Atmospheric Research, 140-141, 14-27.
https://doi.org/10.1016/j.atmosres.2014.01.013
[44]  Jia, M., Zhao, T., Cheng, X., et al. (2017) Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere, 8, 59.
https://doi.org/10.3390/atmos8030059
[45]  张云伟, 王晴茹, 陈嘉, 等. 城市街谷内PM2.5浓度时空变化及影响因素分析[J]. 中国环境科学, 2016, 36(10): 2944-2949.
[46]  肖雪, 曹云刚, 张敏. 成都市PM2.5浓度时空变化特征及影响因子分析[J]. 地理信息世界, 2018, 25(1): 65-70.
[47]  卢文, 王红磊, 朱彬, 等. 南京江北2014-2016年PM2.5质量浓度分布特征及气象和传输影响因素分析[J]. 环境科学学报, 2019, 39(4): 1039-1048.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133