全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无机电子化合物的研究进展
Research Progresses of Inorganic Electrides

DOI: 10.12677/JAPC.2021.103006, PP. 51-61

Keywords: 无机电子化合物,阴离子电子,低功函,电子结构
Inorganic Electrides
, Anionic Electron, Low Work Function, Electronic Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

电子化合物是一种以电子为阴离子的材料。近年来无机电子化合物的概念不断扩展,其宿主材料从离子晶体到金属间化合物,物质状态从晶体到非晶固体,电子约束空间从0维到1维、2维甚至3维材料。无机电子化合物由于其低功函特性,在电子学(电子发射体和电子注入材料)和化学(还原剂和电子供体)等领域都具有广阔应用前景。本文介绍了电子化合物的研究历史及发展现状,重点介绍了各类无机电子化合物及其结构、电子特性,对电子化合物材料研究和应用的推进具有重要意义。
Electrides are materials with electrons as anions. In recent years, the concept of inorganic electrides has expanded as the host materials from ionic crystals to intermetallic compounds, the states from crystals to amorphous solids, and the electron confined space from 0-dimensional to 1-dimensional, 2-dimensional and even 3-dimensional materials. Inorganic electrides have broad application pro-spects in the fields of electronics (electron emitter and electron injection materials) and chemistry (reductants and electron donors) due to their low work function properties. In this paper, the re-search history and development status of electrides are introduced, focusing on various inorganic electrides and their structures and electronic properties, which is of great significance to advance the research and application of electrides materials.

References

[1]  Hideo, H. and Masaaki, K. (2021) Advances in Materials and Applications of Inorganic Electrides. Chemical Reviews, 121, 3121-3185.
https://doi.org/10.1021/acs.chemrev.0c01071
[2]  Yanga, S., Kondo, J.N., Hayashi, K., Hirano, M., Domenb, K. and Hosono, H. (2004) Partial Oxidation of Methane to Syngas over Promoted C12A7. Applied Catalysis A: General, 277, 239-246.
https://doi.org/10.1016/j.apcata.2004.09.030
[3]  Wang, Z.X., Pan, Y., Dong, T., Zhu, X.F., Kan, T., Yuan, L.X., Torimoto, Y., Sadakata, M. and Li, Q.X. (2007) Production of Hydrogen from Catalytic Steam Reforming of Bio-Oil Using C12A7-O-Based Catalysts. Applied Catalysis A: General, 320, 24-34.
https://doi.org/10.1016/j.apcata.2006.12.003
[4]  Tsuji, Y., Dasari, P.L.V.K., Elatresh, S.F., Hoffmann, R. and Ashcroft, N.W. (2016) Structural Diversity and Electron Confinement in Li4N: Potential for 0-D, 2-D, and 3-D Electrides. Journal of the American Chemistry Society, 138, 14108-14120.
https://doi.org/10.1021/jacs.6b09067
[5]  Mott, N.F. (1977) Electrons in Glass. Contemporary Physics, 18, 225-245.
https://doi.org/10.1080/00107517708231483
[6]  Oh, J.S., Kang, C.J., Kim, Y.J., Sinn, S., Han, M., Chang, Y.J., Park, B.G., Kim, S.W., Min, B.I., Kim, H.D. and Noh, T.W. (2016) Evidence for Anionic Excess Electrons in a Quasi-Two-Dimensional Ca2N Electride by Angle-Resolved Photoemission Spectroscopy. Journal of the American Chemistry Society, 138, 2496-2499.
https://doi.org/10.1021/jacs.5b12668
[7]  Kraus, C.A. (1908) Solutions of Metals in Non-metallic Solvents IV. Journal of the American Chemistry Society, 30, 1323-1344.
https://doi.org/10.1021/ja01951a001
[8]  Dye, J.L. (2009) Electrides: Early Examples of Quantum Confinement. Accounts of Chemical Research, 42, 1564-1572.
https://doi.org/10.1021/ar9000857
[9]  Dye, J.L. (1977) Anions of the Alkali Metals. Scientific American, 237, 92-107.
https://doi.org/10.1038/scientificamerican0777-92
[10]  Nandi, P., Dye, J.L. and Jackson, J.E. (2009) Birch Reductions at Room Temperature with Alkali Metals in Silica Gel (Na2K-SG(I)). The Journal of Organic Chemistry, 74, 5790-5792.
https://doi.org/10.1021/jo900904f
[11]  Dye, J.L. (1990) Electrides: Ionic Salts with Electrons as the Anions. Science, 247, 663-668.
https://doi.org/10.1126/science.247.4943.663
[12]  Pedersen, C.J. (1988) The Discovery of Crown Ethers (Noble Lecture). Angewandte Chemie International Edition in English, 27, 1021-1027.
https://doi.org/10.1002/anie.198810211
[13]  Le, L.D., Issa, D., Van Eck, B. and Dye, J.L. (1982) Preparation of Alkalide and Electride Films by Direct Vapor Deposition. The Journal of Chemical Physics, 86, 7-9.
https://doi.org/10.1021/j100390a004
[14]  Dawes, S.B., Ward, D.L., Huang, R.H. and Dye, J.L. (1986) First Electride Crystal Structure. Journal of the American Chemistry Society, 108, 3534-3535.
https://doi.org/10.1021/ja00272a073
[15]  Singh, D.J., Krakauer, H., Haas, C. and Pickett, W.E. (1993) Theoretical Determination that Electrons Act as Anions in the Electride Cs+(15-crown-5)2?e?. Nature, 365, 39-42.
https://doi.org/10.1038/365039a0
[16]  Huang, R.H., Faber, M.K., Moeggenborg, K.J., Ward, D.L. and Dye, J.L. (1988) Structure of K+(cryptand[2.2.2]) Electride and Evidence for Trapped Electron Pairs. Nature, 331, 599-601.
https://doi.org/10.1038/331599a0
[17]  Matsuishi, S., Toda, Y., Miyakawa, M., Hayashi, K., Kamiya, T., Hirano, M., Tanaka, I. and Hosono, H. (2003) High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e?). Science, 301, 626-629.
https://doi.org/10.1126/science.1083842
[18]  Kurashige, K., Toda, Y., Matstuishi, S., Hayashi, K., Hirano, M. and Hosono, H. (2006) Czochralski Growth of 12CaO?7Al2O3 Crystals. Crystal Growth and Design, 6, 1602-1605.
https://doi.org/10.1021/cg0600290
[19]  Hirayama, M., Matsuishi, S., Hosono, H. and Murakami, S. (2018) Electrides as a New Platform of Topological Materials. Physical Review X, 8, Article ID: 031067.
https://doi.org/10.1103/PhysRevX.8.031067
[20]  Otani, S., Hirata, K., Adachi, Y. and Ohashi, N. (2016) Floating Zone Growth and Magnetic Properties of Y2C Two-Dimensional Electride. Journal of Crystal Growth, 454, 15-18.
https://doi.org/10.1016/j.jcrysgro.2016.08.048
[21]  Park, C., Kim, S.W. and Yoon, M. (2018) First-Principles Prediction of New Electrides with Nontrivial Band Topology Based on One-Dimensional Building Blocks. Physical Review Letters, 120, Article ID: 026401.
https://doi.org/10.1103/PhysRevLett.120.026401
[22]  Hayashi, K., Matsuishi, S., Kamiya, T., Hirano, M. and Hosono, H. (2002) Light-Induced Conversion of an Insulating Refractory Oxide into a Persistent Electronic Conductor. Nature, 419, 462-465.
https://doi.org/10.1038/nature01053
[23]  Kim, S.W., Matsuishi, S., Nomura, T., Kubota, Y., Takata, M., Hayashi, K., Kamiya, T., Hirano, M. and Hosono, H. (2007) Metallic State in a Lime-Alumina Compound with Nanoporous Structure. Nano Letters, 7, 1138-1143.
https://doi.org/10.1021/nl062717b
[24]  Zhu, S.-C., Wang, L., Qu, J.-Y., Wang, J.-J., Frolov, T., Chen, X.-Q. and Zhu, Q. (2019) Computational Design of Flexible Electrides with Nontrivial Band Topology. Physical Review Materials, 3, Article ID: 024205.
https://doi.org/10.1103/PhysRevMaterials.3.024205
[25]  Naumov, I.I. and Hemley, R.J. (2017) Metallic Surface States in Elemental Electrides. Physical Review B: Condensed Matter and Materials Physics, 96, Article ID: 035421.
https://doi.org/10.1103/PhysRevB.96.035421
[26]  Miyakawa, M., Kim, S.W., Hirano, M., Kohama, Y., Kawaji, H., Atake, T., Ikegami, H., Kono, K. and Hosono, H. (2007) Superconductivity in an Inorganic Electride 12CaO?7Al2O3:e?. Journal of the American Chemistry Society, 129, 7270-7271.
https://doi.org/10.1021/ja0724644
[27]  Oganov, A.R., Pickard, C.J., Zhu, Q. and Needs, R.J. (2019) Structure Prediction Drives Materials Discovery. Nature Reviews Materials, 4, 331-348.
https://doi.org/10.1038/s41578-019-0101-8
[28]  Toda, Y., Yanagi, H., Ikenaga, E., Kim, J.J., Kobata, M., Ueda, S., Kamiya, T., Hirano, M., Kobayashi, K. and Hosono, H. (2007) Work Function of a Room-Temperature, Stable Electride [Ca24Al28O64]4+(e?)4. Advanced Materials, 19, 3564-3569.
https://doi.org/10.1002/adma.200700663
[29]  Zhang, Y., Wang, H., Wang, Y., Zhang, L. and Ma, Y. (2017) Computer-Assisted Inverse Design of Inorganic Electrides. Physical Review X, 7, Article ID: 011017.
https://doi.org/10.1103/PhysRevX.7.011017
[30]  Lee, K., Kim, S. W., Toda, Y., Matsuishi, S. and Hosono, H. (2013) Dicalcium Nitride as a Two-Dimensional Electride with an Anionic Electron Layer. Nature, 494, 336-340.
https://doi.org/10.1038/nature11812
[31]  Wang, Y., Lv, J., Zhu, L. and Ma, Y. (2012) CALYPSO: A Method for Crystal Structure Prediction. Computer Physics Communications, 183, 2063-2070.
https://doi.org/10.1016/j.cpc.2012.05.008
[32]  Inoshita, T., Jeong, S., Hamada, N. and Hosono, H. (2014) Exploration for Two-Dimensional Electrides via Database Screening and Ab-Initio Calculation. Physical Review X, 4, Article ID: 031023.
https://doi.org/10.1103/PhysRevX.4.031023
[33]  Zhou, J., Shen, L., Yang, M., Cheng, H., Kong, W. and Feng, Y.P. (2019) Discovery of Hidden Classes of Layered Electrides by Extensive High Throughput Material Screening. Chemistry of Materials, 31, 1860-1868.
https://doi.org/10.1021/acs.chemmater.8b03021
[34]  Huang, B. and Frapper, G. (2018) Barium-Nitrogen Phases under Pressure: Emergence of Structural Diversity and Nitrogen-Rich Compounds. Chemistry of Materials, 30, 7623-7636.
https://doi.org/10.1021/acs.chemmater.8b02907
[35]  Stormer, H.L., Dingle, R., Gossard, A.C., Wiegmann, W. and Sturge, M.D. (1979) Two-Dimensional Electron Gas at a Semiconductor-Semiconductor Interface. Solid State Communications, 29, 705-709.
https://doi.org/10.1016/0038-1098(79)91010-X
[36]  Vennos, D.A., Badding, M.E. and DiSalvo, F.J. (1990) Synthesis, Structure, and Properties of a New Ternary Metal Nitride, Ca3CrN3. Inorganic Chemistry, 29, 4059-4062.
https://doi.org/10.1021/ic00345a030
[37]  Zhao, S., Li, Z. and Yang, J. (2014) Obtaining Two-Dimensional Electron Gas in Free Space without Resorting to Electron Doping: An Electride Based Design. Journal of the American Chemistry Society, 136, 13313-13318.
https://doi.org/10.1021/ja5065125
[38]  Burton, L.A., Ricci, F., Chen, W., Rignanese, G.-M. and Hautier, G. (2018) High-Throughput Identification of Electrides from All Known Inorganic Materials. Chemistry of Materials, 30, 7521-7526.
https://doi.org/10.1021/acs.chemmater.8b02526
[39]  Inoshita, T., Takemoto, S., Tada, T. and Hosono, H. (2017) Surface Electron States on the Quasi-Two-Dimensional Excess-Electron Compounds Ca2N and Y2C. Physical Review B: Condensed Matter and Materials Physics, 95, Article ID: 165430.
https://doi.org/10.1103/PhysRevB.95.165430
[40]  Chanhom, P., Fritz, K.E., Burton, L.A., Kloppenburg, J., Filinchuk, Y., Senyshyn, A., Wang, M., Feng, Z., Insin, N., Suntivich, J. and Hautier, G. (2019) Sr3CrN3: A New Electride with a Partially Filled d-Shell Transition Metal. Journal of the American Chemical Society, 141, 10595-10598.
https://doi.org/10.1021/jacs.9b03472
[41]  Wang, J., Sui, X., Gao, S., Duan, W., Liu, F. and Huang, B. (2019) Anomalous Dirac Plasmons in 1D Topological Electrides. Physical Review Letters, 123, Article ID: 206402.
https://doi.org/10.1103/PhysRevLett.123.206402
[42]  Woomer, A.H., Druffel, D.L., Sundberg, J.D., Pawlik, J.T. and Warren, S.C. (2019) Bonding in 2D Donor-Acceptor Heterostructures. Journal of the American Chemistry Society, 141, 10300-10308.
https://doi.org/10.1021/jacs.9b03155
[43]  Khazaei, M., Ranjbar, A., Ghorbani-Asl, M., Arai, M., Sasaki, T., Liang, Y. and Yunoki, S. (2016) Nearly Free Electron States in MXenes. Physical Review B: Condensed Matter and Materials Physics, 93, Article ID: 205125.
https://doi.org/10.1103/PhysRevB.93.205125
[44]  Ma, Y., Eremets, M., Oganov, A.R., Xie, Y., Trojan, I., Medvedev, S., Lyakhov, A.O., Valle, M. and Prakapenka, V. (2009) Transparent Dense Sodium. Nature, 458, 182-185.
https://doi.org/10.1038/nature07786
[45]  Wan, B., Zhang, J., Wu, L. and Gou, H. (2019) High-Pressure Electrides: From Design to Synthesis. Chinese Physics B, 28, Article ID: 106201.
https://doi.org/10.1088/1674-1056/ab3f95
[46]  Kim, S.W., Shimoyama, T. and Hosono, H. (2011) Solvated Electrons in High-Temperature Melts and Glasses of the Room-Temperature Stable Electride [Ca24Al28O64]4+?4e?. Science, 333, 71-74.
https://doi.org/10.1126/science.1204394
[47]  Miao, M.S. and Hoffmann, R. (2014) High Pressure Electrides: A Predictive Chemical and Physical Theory. Accounts of Chemical Research, 47, 1311-1317.
https://doi.org/10.1021/ar4002922
[48]  Johnson, L.E., Sushko, P.V., Tomota, Y. and Hosono, H. (2016) Electron Anions and the Glass Transition Temperature. Proceedings of the National Academy of the Sciences of the United States of America, 113, 10007-10012.
https://doi.org/10.1073/pnas.1606891113
[49]  Miao, M.S. and Hoffmann, R. (2015) High-Pressure Electrides: The Chemical Nature of Interstitial Quasiatoms. Journal of the American Chemical Society, 137, 3631-3637.
https://doi.org/10.1021/jacs.5b00242
[50]  Mizoguchi, H., Muraba, Y., Fredrickson, D.C., Matsuishi, S., Kamiya, T. and Hosono, H. (2017) The Unique Electronic Structure of Mg2Si: Shaping the Conduction Bands of Semiconductors with Multicenter Bonding. Angewandte Chemie International Edition, 56, 10135-10139.
https://doi.org/10.1002/anie.201701681
[51]  Vergniory, M.G., Elcoro, L., Felser, C, Regnault, N., Bernevig, B.A. and Wang, Z. (2019) A Complete Catalogue of High-Quality Topological Materials. Nature, 566, 480-485.
https://doi.org/10.1038/s41586-019-0954-4
[52]  Mizoguchi, H., Okunaka, M., Kitano, M., Matsuishi, S., Yokoyama, T. and Hosono, H. (2016) Hydride-Based Electride Material, LnH2 (Ln = La, Ce, or Y). Inorganic Chemistry, 55, 8833-8838.
https://doi.org/10.1021/acs.inorgchem.6b01369
[53]  Matsushita, Y. and Oshiyama, A. (2014) Interstitial Channels That Control Band Gaps and Effective Masses in Tetrahedrally Bonded Semiconductors. Physical Review Letters, 112, Article ID: 136403.
https://doi.org/10.1103/PhysRevLett.112.136403
[54]  Zhang, X., Guo, R., Jin, L., Dai, X. and Liu, G. (2018) Intermetallic Ca3Pb: A Topological Zero-Dimensional Electride Material. Journal of Materials Chemistry C, 6, 575-581.
https://doi.org/10.1039/C7TC04989G
[55]  Huang, H., Jin, K.H., Zhang, S. and Liu, F. (2018) Topological Electride Y2C. Nano Letters, 18, 1972-1977.
https://doi.org/10.1021/acs.nanolett.7b05386
[56]  Issa, D. and Dye, J.L. (1982) Synthesis of Cesium 18-Crown-6: The First Single-Crystal Electride? Journal of the American Chemical Society, 104, 3781-3782.
https://doi.org/10.1021/ja00377a066

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133