全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂硫电池有机硫聚合物正极材料研究进展
Research Progress of Organic Sulfur Polymer Cathode Materials for Lithium-Sulfur Batteries

DOI: 10.12677/JAPC.2021.103005, PP. 41-50

Keywords: 有机硫聚合物,正极材料,锂硫电池
Organic Sulfur Polymers
, Cathode Materials, Lithium-Sulfur Batteries

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂–硫(Li-S)电池能量密度高,成本低,十分具有替代目前的商用锂离子电池的潜力。然而在电池工作时,多硫化物的穿梭效应极大地缩短了电池的循环寿命。近年来,硫共聚策略被认为是提高Li-S电池稳定性的一种创新而有效的方法,在该策略中,环状硫被熔融成线型,随后与可聚合的连接单体共聚形成稳定的有机硫聚合物。由于硫与共聚物骨架之间形成强共价键,因此在循环时可以有效地抑制多硫化物的溶解。本文综述了锂硫电池有机硫共聚物正极材料方面的相关研究进展。
Lithium-sulfur (Li-S) batteries have the potential to replace current commercial lithium-ion batter-ies because of their high energy density and low cost. However, the shuttle effect of polysulfide greatly shortens the cycle life of the battery in operation. In recent years, the sulfur copolymeriza-tion strategy has been considered as an innovative and effective method to improve the stability of Li-S batteries. In this strategy, the cyclic sulfur is fused into a linear form and then copolymerized with the polymerizable linking monomer to form a stable organic sulfur polymer. Because of the strong covalent bond between sulfur and the copolymer skeleton, the dissolution of polysulfide can be effectively inhibited during cycling. In this paper, the research progress of organic sulfur copol-ymer cathode materials for lithium-sulfur batteries is reviewed.

References

[1]  Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652-657.
https://doi.org/10.1038/451652a
[2]  Goodenough, J.B. (2015) Energy Storage Materials: A Perspective. Energy Storage Materials, 1, 158-161.
https://doi.org/10.1016/j.ensm.2015.07.001
[3]  Wang, X., Chen, Y., Schmidt, O.G. and Yan, C. (2016) Engineered Nanomembranes for Smart Energy Storage Devices. Chemical Society Reviews, 45, 1308-1330.
https://doi.org/10.1039/C5CS00708A
[4]  Zhou, J., Qian, T., Wang, M., Xu, N., Zhang, Q., Li, Q. and Yan, C. (2016) Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 5358-5365.
https://doi.org/10.1021/acsami.5b12392
[5]  Xu, N., Ma, X., Wang, M., Qian, T., Liang, J., Yang, W., Wang, Y., Hu, J. and Yan, C. (2016) Stationary Full Li-Ion Batteries with Interlayer-Expanded V6O13 Cathodes and Lithiated Graphite Anodes. Electrochemical Acta, 203, 171-177.
https://doi.org/10.1016/j.electacta.2016.04.044
[6]  Zhou, J., Qian, T., Yang, T., Wang, M., Guo, J. and Yan, C. (2015) Nanomeshes of Highly Crystalline Nitrogen-Doped Carbon Encapsulated Fe/Fe3C Electrodes as Ultrafast and Stable Anodes for Li-Ion Batteries. Journal of Materials Chemistry A, 3, 15008-15014.
https://doi.org/10.1039/C5TA03312H
[7]  Yang, T., Qian, T., Wang, M., Liu, J., Zhou, J., Sun, Z., Chen, M. and Yan, C. (2015) A New Approach towards the Synthesis of Nitrogen-Doped Graphene/MnO2 Hybrids for Ultralong Cycle-Life Lithium Ion Batteries. Journal of Materials Chemistry A, 3, 6291-6296.
https://doi.org/10.1039/C4TA07208A
[8]  Fang, R., Zhao, S., Sun, Z., Wang, D.W., Cheng, H.M. and Li, F. (2017) More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 29, Article ID: 1606823.
https://doi.org/10.1002/adma.201606823
[9]  Yang, T., Qian, T., Wang, M., Shen, X., Xu, N., Sun, Z. and Yan, C. (2016) A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries. Advanced Materials, 28, 539-545.
https://doi.org/10.1002/adma.201503221
[10]  Xie, Y., Chen, Y., Liu, L., Tao, P., Fan, M., Xu, N., Shen, X. and Yan, C. (2017) Carbon Monoliths: Ultra-High Pyridinic N-Doped Porous Carbon Monolith Enabling High-Capacity K-Ion Battery Anodes for Both Half-Cell and Full-Cell Applications. Advanced Materials, 29, Article ID: 1702268.
https://doi.org/10.1002/adma.201702268
[11]  Xu, J., Lawson, T., Fan, H., Su, D. and Wang, G. (2018) Updated Metal Compounds (MOFs, -S, -OH, -N, -C) Used as Cathode Materials for Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1702607.
https://doi.org/10.1002/aenm.201702607
[12]  Bruce, P.G., Freunberger, S.A., Hardwick, L.J. and Tarascon, J.M. (2012) Li-O2 and Li-S Batteries with High Energy Storage. Nature Materials, 11, 19-29.
https://doi.org/10.1038/nmat3191
[13]  Evers, S. and Nazar, L.F. (2013) New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes. Accounts of Chemical Research, 46, 1135-1143.
https://doi.org/10.1021/ar3001348
[14]  Ji, X.L., Lee, K.T. and Nazar, L.F. (2009) A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries. Nature Materials, 8, 500-506.
https://doi.org/10.1038/nmat2460
[15]  Yang, Y., Zheng, G.Y. and Cui, Y. (2013) Nanostructured Sulfur Cathodes. Chemical Society Reviews, 42, 3018-3032.
https://doi.org/10.1039/c2cs35256g
[16]  Liang, J., Sun, Z.H., Li, F. and Cheng, H.M. (2016) Carbon Materials for Li-S Batteries: Functional Evolution and Performance Improvement. Energy Storage Materials, 2, 76-106.
https://doi.org/10.1016/j.ensm.2015.09.007
[17]  Larcher, D. and Tarascon, J. (2015) Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nature Chemistry, 7, 19-29.
https://doi.org/10.1038/nchem.2085
[18]  Pang, Q., Liang, X., Kwok, C.Y. and Nazar, L.F. (2016) Advances in Lithium-Sulfur Batteries Based on Multifunctional Cathodes and Electrolytes. Nature Energy, 1, 16132-16142.
https://doi.org/10.1038/nenergy.2016.132
[19]  Wild, M., O’Neill, L., Zhang, T., Purkayastha, R., Minton, G., Marinescu, M. and O?er, G.J. (2015) Lithium Sulfur Batteries, a Mechanistic Review. Energy & Environmental Science, 8, 3477-3494.
https://doi.org/10.1039/C5EE01388G
[20]  Rosenman, A., Markevich, E., Salitra, G., Aurbach, D., Garsuch, A. and Chesneau, F.F. (2015) Review on Li-Sulfur Battery Systems: An Integral Perspective. Advanced Energy Materials, 5, Article ID: 1500212.
https://doi.org/10.1002/aenm.201500212
[21]  Liu, J., Qian, T., Wang, M., Liu, X., Xu, N., You, Y. and Yan, C. (2017) Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 17, 5064-5070.
https://doi.org/10.1021/acs.nanolett.7b02332
[22]  Ma, L., Hendrickson, K.E., Wei, S. and Archer, L.A. (2015) Nanomaterials: Science and Applications in the Lithium-Sulfur Battery. Nano Today, 10, 315-338.
https://doi.org/10.1016/j.nantod.2015.04.011
[23]  Cheng, X.B., Huang, J.Q., Zhang, Q., Peng, H.J., Zhao, M.Q. and Wei, F. (2014) Aligned Carbon Nanotube/Sulfur Composite Cathodes with High Sulfur Content for Lithium-Sulfur Batteries. Nano Energy, 4, 65-72.
https://doi.org/10.1016/j.nanoen.2013.12.013
[24]  Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y. and Dai, H. (2011) Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 11, 2644-2647.
https://doi.org/10.1021/nl200658a
[25]  Zheng, G., Yang, Y., Cha, J.J., Hong, S.S. and Cui, Y. (2011) Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Letters, 11, 4462-4467.
https://doi.org/10.1021/nl2027684
[26]  Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A. and Archer, L.A. (2011) Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angewandte Chemie, 126, 6026-6030.
https://doi.org/10.1002/ange.201100637
[27]  Xiao, L.F., Cao, Y.L., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z.M., Exarhos, G.J. and Liu, J. (2012) A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials, 24, 1176-1181.
https://doi.org/10.1002/adma.201103392
[28]  Wu, F., Chen, J.Z., Chen, R.J., Wu, S.X., Li, L., Chen, S. and Zhao, T. (2011) Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries. The Journal of Physical Chemistry C, 115, 6057-6063.
https://doi.org/10.1021/jp1114724
[29]  Wang, J., Chen, J., Konstantinov, K., Zhao, L., Ng, S.H., Wang, G.X., Guo, Z.P. and Liu, H.K. (2006) Sulphur-Polypyrrole Composite Positive Electrode Materials for Rechargeable Lithium Batteries. Electrochemical Acta, 51, 4634-4638.
https://doi.org/10.1016/j.electacta.2005.12.046
[30]  Choi, Y.J., Jung, B.S., Lee, D.J., Jeong, J.H., Kim, K.W., Ahn, H.J., Cho, K.K. and Gu, H.B. (2007) Electrochemical Properties of Sulfur Electrode Containing Nano Al2O3 for Lithium/Sulfur Cell. Physica Scripta, T129, 62-65.
https://doi.org/10.1088/0031-8949/2007/T129/014
[31]  Lee, K.T., Black, R., Yim, T., Ji, X.L. and Nazar, L.F. (2012) Surface-Initiated Growth of Thin Oxide Coatings for Li-Sulfur Battery Cathodes. Advanced Energy Materials, 2, 1490-1496.
https://doi.org/10.1002/aenm.201200006
[32]  Seh, Z.W., Li, W.Y., Cha, J.J., Zheng, G.Y., Yang, Y., McDowell, M.T., Hsu, P.C. and Cui, Y. (2013) Sulphur-TiO2 Yolk-Shell Nanoarchitecture with Internal Void Space for Long-Cycle Lithium-Sulphur Batteries. Nature Communications, 4, 1331-1336.
https://doi.org/10.1038/ncomms2327
[33]  Chang, C.H., Chung, S.H. and Manthiram, A. (2017) Transforming Waste Newspapers into Nitrogen-Doped Conducting Interlayers for Advanced Li-S Batteries. Sustainable Energy Fuels, 1, 444-449.
https://doi.org/10.1039/C7SE00014F
[34]  Xin, S., Gu, L., Zhao, N.-H., Yin, Y.-X., Zhou, L.-J., Guo, Y.-G. and Wan, L.-J. (2012) Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries. Journal of the American Chemical Society, 134, 18510-18513.
https://doi.org/10.1021/ja308170k
[35]  Wang, J., Yang, J., Xie, J. and Xu, N. (2002) A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 14, 13-14.
https://doi.org/10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
[36]  Kim, J.-S., Hwang, T.H., Kim, B.G., Min, J. and Choi, J.W. (2014) A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials, 24, 5359-5367.
https://doi.org/10.1002/adfm.201400935
[37]  Chung, W.J., Griebel, J.J., Kim, E.T., Yoon, H., Simmonds, A.G., Ji, H.J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Arpad, S., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K. and Pyun, J. (2013) The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nature Chemistry, 5, 518-524.
https://doi.org/10.1038/nchem.1624
[38]  Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K. and Pyun, J. (2014) Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries. ACS Macro Letters, 3, 229-232.
https://doi.org/10.1021/mz400649w
[39]  Zeng, S., Li, L., Zhao, D., Liu, J., Niu, W., Wang, N. and Chen, S. (2017) Polymer-Capped Sulfur Copolymers as Lithium-Sulfur Battery Cathode: Enhanced Performance by Combined Contributions of Physical and Chemical Confinements. The Journal of Physical Chemistry C, 121, 2495-2503.
https://doi.org/10.1021/acs.jpcc.6b09543
[40]  Xu, R., Lu, J. and Amine, K. (2015) Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500408.
https://doi.org/10.1002/aenm.201500408
[41]  Liu, X., Huang, J.-Q., Zhang, Q. and Mai, L. (2017) Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Advanced. Materials, 29, Article ID: 1601759.
https://doi.org/10.1002/adma.201601759
[42]  Pope, M.A. and Aksay, I.A. (2015) Structural Design of Cathodes for Li-S Batteries. Advanced Energy Materials, 5, Article ID: 1500124.
https://doi.org/10.1002/aenm.201500124
[43]  Wang, J., He, Y.-S. and Yang, J. (2015) Sulfur-Based Composite Cathode Materials for High-Energy Rechargeable Lithium Batteries. Advanced Materials, 27, 569-575.
https://doi.org/10.1002/adma.201402569
[44]  Dirlam, P.T., Glass, R.S., Char, K. and Pyun, J. (2017) The Use of Polymers in Li-S Batteries: A Review. Journal of Polymer Science Part A: Polymer Chemistry, 55, 1635-1668.
https://doi.org/10.1002/pola.28551
[45]  Penczek, S., Slazak, R. and Duda, A. (1978) Anionic Copolymerisation of Elemental Sulphur. Nature, 273, 738-739.
https://doi.org/10.1038/273738a0
[46]  Duda, A. and Penczek, S. (1980) Anionic Copolymerisation of Elemental Sulfur with 2,2-Dimethylthiirane. Die Makromolekulare Chemie, 181, 995-1001.
https://doi.org/10.1002/macp.1980.021810503
[47]  Blight, L.B., Currell, B.R., Nash, B.J., Scott, T.M. and Stillo, C. (1980) Chemistry of the Modification of Sulphur by the Use of Dicyclopentadiene and of Styrene. British Polymer Journal, 12, 5-11.
https://doi.org/10.1002/pi.4980120103
[48]  Tsuda, T. and Takeda, A. (1996) Palladium-Catalysed Cycloaddition Copolymerisation of Diynes with Elemental Sulfur to Poly(thiophene)s. Chemical Communications, 1317-1318.
https://doi.org/10.1039/cc9960001317
[49]  Fu, C., Li, G., Zhang, J., Cornejo, B., Piao, S.S., Bozhilov, K.N., Haddon, R.C. and Guo, J. (2016) Electrochemical Lithiation of Covalently Bonded Sulfur in Vulcanized Polyisoprene. ACS Energy Letters, 1, 115-120.
https://doi.org/10.1021/acsenergylett.6b00073
[50]  Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E. and Zentel, R. (2015) Copolymerization of Polythiophene and Sulfur to Improve the Electrochemical Performance in Lithium-Sulfur Batteries. Chemistry Materials, 27, 7011-7017.
https://doi.org/10.1021/acs.chemmater.5b02317
[51]  Sun, Z., Xiao, M., Wang, S., Han, D., Song, S., Chen, G. and Meng, Y. (2014) Sulfur-Rich Polymeric Materials with Semi-Interpenetrating Network Structure as a Novel Lithium-Sulfur Cathode. Journal of Materials Chemistry A, 2, 9280-9286.
https://doi.org/10.1039/c4ta00779d
[52]  Hu, H., Zhao, Z., Wan, W., Gogotsi, Y. and Qiu, J. (2013) Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 25, 2219-2223.
https://doi.org/10.1002/adma.201204530
[53]  Kim, H., Lee, J., Ahn, H., Kim, O. and Park, M.J. (2015) Synthesis of Three-Dimensionally Interconnected Sulfur-Rich Polymers for Cathode Materials of High-Rate Lithium-Sulfur Batteries. Nature Communications, 6, 7278-7287.
https://doi.org/10.1038/ncomms8278
[54]  Je, S.H., Hwang, T.H., Talapaneni, S.N., Buyukcakir, O., Kim, H.J., Yu, J.-S., Woo, S. -G., Jang, M.C., Son, B.K., Coskun, A. and Choi, J.W. (2016) Rational Sulfur Cathode Design for Lithium-Sulfur Batteries: Sulfur-Embedded Benzoxazine Polymers. ACS Energy Letters, 1, 566-572.
https://doi.org/10.1021/acsenergylett.6b00245
[55]  Xu, N., Qian, T., Liu, X., Liu, J., Chen, Y. and Yan, C. (2017) Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 17, 538-543.
https://doi.org/10.1021/acs.nanolett.6b04610
[56]  Wang, J., Yang, J., Wan, C., Du, K., Xie, J. and Xu, N. (2003) Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials, 13, 487-492.
https://doi.org/10.1002/adfm.200304284
[57]  Yu, X., Xie, J., Yang, J., Huang, H., Wang, K. and Wen, Z. (2004) Lithium Storage in Conductive Sulfur-Containing Polymers. Journal of Electroanalytical Chemistry, 573, 121-128.
https://doi.org/10.1016/S0022-0728(04)00345-6
[58]  Fanous, J., Wegner, M., Grimminger, J., Andresen, A. and Buchmeiser, M.R. (2011) Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 23, 5024-5028.
https://doi.org/10.1021/cm202467u
[59]  Zhang, S.S. (2014) Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery. Energies, 7, 4588-4600.
https://doi.org/10.3390/en7074588
[60]  Wang, L., He, X., Li, J., Chen, M., Gao, J. and Jiang, C. (2012) Charge/Discharge Ccharacteristics of Sulfurized Polyacrylonitrile Composite with Different Sulfur Content in Carbonate Based Electrolyte for Lithium Batteries. Electrochimica Acta, 72, 114-119.
https://doi.org/10.1016/j.electacta.2012.04.005
[61]  Wei, S., Ma, L., Hendrickson, K.E., Tu, Z. and Archer, L.A. (2015) Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Journal of the American Chemical Society, 137, 12143-12152.
https://doi.org/10.1021/jacs.5b08113
[62]  Talapaneni, S.N., Hwang, T.H., Je, S.H., Buyukcakir, O., Choi, J.W. and Coskun, A. (2016) Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 128, 3158-3163.
https://doi.org/10.1002/ange.201511553
[63]  Song, J., Xu, T., Gordin, M.L., Zhu, P., Lv, D., Jiang, Y.-B., Chen, Y., Duan, Y. and Wang, D. (2014) Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries. Advanced Functional Materials, 24, 1243-1250.
https://doi.org/10.1002/adfm.201302631
[64]  Manthiram, A., Chung, S.H. and Zu, C. (2015) Lithium-Sulfur Batteries: Progress and Prospects. Advanced Materials, 27, 1980-2006.
https://doi.org/10.1002/adma.201405115
[65]  Li, X., Liang, J., Lu, Y., Hou, Z., Cheng, Q., Zhu, Y. and Qian, Y. (2017) Sulfur-Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 56, 2937-2941.
https://doi.org/10.1002/anie.201611691
[66]  Zhou, J., Qian, T., Xu, N., Wang, M., Ni, X., Liu, X., Shen, X. and Yan, C. (2017) Selenium-Doped Cathodes for Lithium-Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency. Advanced Materials, 29, Article ID: 1701294.
https://doi.org/10.1002/adma.201701294

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133