|
基于改进粒子群算法优化回声状态网络的时间序列预测
|
Abstract:
[1] | Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T.S. and Simon, I. (2003) Continuous Representations of Time-Series Gene Expression n Data. Journal of Computational Biology: A Journal of Computational Molecular Cell Bi-ology, 10, 341-356. https://doi.org/10.1089/10665270360688057 |
[2] | 李兴兴. 金融时间序列的建模与预测[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2018. |
[3] | 张帆. 基于神经网络的交通流时间序列预测[J]. 现代信息科技, 2020, 4(23): 87-89, 93. |
[4] | Billinton, R., Hua, C. and Ghajar, R. (1996) Time-Series Models for Reliability Evaluation of Power Systems Including Wind Energy. Microelectronics Reliability, 36, 1253-1261. https://doi.org/10.1016/0026-2714(95)00154-9 |
[5] | Ghil, M. and Vautard, R. (1991) Interdecadal Oscillations and the Warming Trend in Global Temperature Time Series. Nature, 350, 324-327. https://doi.org/10.1038/350324a0 |
[6] | Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., et al. (2010) Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines. IEEE Transac-tions on Biomedical Engineering, 57, 1124-1132.
https://doi.org/10.1109/TBME.2009.2038990 |
[7] | Laner, M., Svoboda, P. and Rupp, M. (2013) Parsimonious Fitting of Long-Range Dependent Network Traffic Using ARMA Models. IEEE Communications Letters, 17, 2368-2371. https://doi.org/10.1109/LCOMM.2013.102613.131853 |
[8] | Narendra, B.C. and Eswara, R.B. (2014) A Moving-Average Filter Based Hybrid ARIMA-ANN Model for Forecasting Time Series Data. Applied Soft Compu-ting, 23, 27-38. https://doi.org/10.1016/j.asoc.2014.05.028 |
[9] | 孟庆芳, 陈珊珊, 陈月辉, 冯志全. 基于递归量化分析与支持向量机的癫痫脑电自动检测方法[J]. 物理学报, 2014(5): 1-8. |
[10] | Li, K., Han, Y. and Huang, H.Q. (2016) Chaotic Time Series Prediction Based on IBH-LSSVM and Its Application to Short-Term Prediction of Dynamic Fluid Level of the Oil Wells. Information and Control, 45, 241-247. |
[11] | 梁智珲. 遗传算法优化前向神经网络结构和权重矢量研究[J]. 信息与电脑(理论版), 2019(14): 37-38, 43. |
[12] | Jaeger, H. and Haas, H. (2004) Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science, 304, 78-80. https://doi.org/10.1126/science.1091277 |
[13] | 韩莹, 井元伟, 金建宇, 李琨. 基于改进黑洞算法优化ESN的网络流量短期预测[J]. 东北大学学报(自然科学版), 2018, 39(3): 311-315. |
[14] | Wang, H.S. and Yan, X.F. (2015) Op-timizing the Echo State Network with a Binary Particle Swarm Optimization Algorithm. Knowledge Based Systems, 86, 182-193. https://doi.org/10.1016/j.knosys.2015.06.003 |
[15] | Chouikhi, N., Ammar, B., Rokbani, N. and Alimi, A.M. (2017) PSO-Based Analysis of Echo State Network Parameters for Time Series for Ecasting. Applied Soft Compu-ting, 55, 211-225. https://doi.org/10.1016/j.asoc.2017.01.049 |
[16] | 彭宇, 王建民, 彭喜元. 基于回声状态网络的时间序列预测方法研究[J]. 电子学报, 2010, 38(z1): 148-154. |
[17] | Chen, H.C. and Wei, D.Q. (2021) Chaotic Time Series Prediction Using Echo State Network Based on Selective Opposition Grey Wolf Optimizer. Nonlinear Dynamics, 104, 3925-3935. https://doi.org/10.1007/s11071-021-06452-w |
[18] | 任条娟, 钟陈健, 刘半藤, 郑启航. 基于弹性小世界回声状态网络的非线性时间序列预测[J]. 计算机应用与软件, 2021, 38(6): 256-261. |
[19] | Li, D.Y., Liu, F., Qiao, J.F. and Li, R. (2019) Structure Optimization for Echo State Network Based on Contribution. Tsinghua Science and Technology, 24, 97-105. https://doi.org/10.26599/TST.2018.9010049 |
[20] | 史柏迪, 庄曙东, 韩祺. 基于改进的粒子群优化神经网络粗糙度预测模型[J]. 组合机床与自动化加工技术, 2021(2): 30-33+38. |
[21] | 张春韵, 邹德旋, 沈鑫. 改进的粒子群算法在电力经济调度中的应用[J]. 制造业自动化, 2021, 43(1): 53-57+64. |
[22] | 韩顺杰, 单新超,于爱君, 符金鑫. 基于改进粒子群算法的工业机器人轨迹规划[J]. 制造技术与机床, 2021(4): 8-14. |