|
基于轨迹大数据的城市交通状态识别研究
|
Abstract:
对城市交通状态的有效识别与评估有助于提高城市交通精细化管理水平和应急响应能力。以轨迹大数据为基础,提出基于多个交通要素的城市交通状态识别模型。首先建立基于路段平均速度、交通流密度、行驶时间指数、拥堵指数和车道占有率的交通状态识别的综合指标体系,并以交通时空大数据为基础,结合主成分分析方法构建综合指标体系中各个指标的客观权重。进一步根据交通状态的模糊性,建立基于核模糊C均值聚类的交通状态识别模型。最后以兰州市出租车GPS数据为基础,对兰州市的城市交通状态进行识别和划分,分析了兰州市的交通状态的时空演化特征。实验结果表明,兰州市交通状态分为5个等级,城市交通整体上呈现拥堵状态,且拥堵路段空间分布有较大差异,集聚特征比较明显。
The effective identification and evaluation of urban traffic state are helpful to improve the fine management level and emergency response capability of urban traffic. Based on trajectory big data, a traffic state recognition model based on multiple traffic elements is proposed. Firstly, a compre-hensive index system for traffic state identification based on average speed of road sections, traffic flow density, travel time index, congestion index and lane occupancy rate is established. Based on trajectory big data, combined with principal component analysis, the objective weight of each index in the comprehensive index system is constructed. Then, according to the fuzziness of traffic state, a traffic state recognition model based on kernel-based fuzzy C-means clustering is established. Fi-nally, the urban traffic state of Lanzhou city is identified and divided based on the taxi GPS data of Lanzhou city, and the temporal and spatial evolution characteristics of the traffic state of Lanzhou city are analyzed. The experimental results show that the traffic state in Lanzhou is divided into five grades. The urban traffic is congested during all working hours. There are great differences in the spatial distribution of congested road sections, and the aggregative characteristics are obvious.
[1] | Rudolph, F. and Matrai, T. (2018) Congestion from a Multimodal Perspective. Periodica Polytechnica Transportation Engineering, 46, 215-221. |
[2] | Anjaneyulu, M.V.L.R. and Nagaraj, B.N. (2009) Modeling Congestion on Urban Roads Using Speed Profile Data. Journal of the Indian Roads Congress, 1, 65-74. |
[3] | Litman, T. (2014) Congestion Evalua-tion Best Practices. International Transportation Economic Development Conference, Dallas, USA, 9-11 April 2014, 1-20. |
[4] | 黄艳国, 宋二猛, 钟建新. 城市区域路网交通状态分析与评价方法[J]. 重庆交通大学学报(自然科学版), 2017, 36(12): 91-96. |
[5] | TRB and National Research Council (2000) Transportation Research Board. Highway Capacity Manual. Washington DC. |
[6] | 北京交通发展研究中心. GB/T33171-2016城市交通运行状况评价规范[S]. 北京: 中国标准出版社, 2016. |
[7] | An, S., Yang, H.Q., Wang, J., Cui, N. and Cui, J.X. (2016) Mining Urban Recur-rent Congestion Evolution Patterns from GPS-Equipped Vehicle Mobility Data. Information Sciences, 373, 515-526.
https://doi.org/10.1016/j.ins.2016.06.033 |
[8] | 何兆成, 周亚强, 余志. 基于数据可视化的区域交通状态特征评价方法[J]. 交通运输工程学报, 2016, 16(1): 133-140. |
[9] | Wang, Y.Q., Cao, J.N., Li, W.G., Gu, T. and Shi, W.Z. (2017) Exploring Traffic Congestion Correlation From Multiple Data Sources. Pervasive and Mobile Computing, 41, 470-483. https://doi.org/10.1016/j.pmcj.2017.03.015 |
[10] | 熊励, 杨淑芬, 张芸. 大数据背景下基于5S的城市交通拥堵评价模型研究[J]. 运筹与管理, 2018, 27(1): 117-124. |
[11] | Guo, Y.J., Yang, L.C., Hao, S.X. and Gao, J. (2019) Dynamic Identification of Urban Traffic Congestion Warning Communities in Heterogeneous Networks. Physica A: Statistical Mechanics and Its Applications, 522, 98-111.
https://doi.org/10.1016/j.physa.2019.01.139 |
[12] | Song, J.C., Zhao, C.L., Zhong, S.P., Nielsen, T.A.S. and Pri-shchepov, A.V. (2019) Mapping Spatio-Temporal Patterns and Detecting the Factors of Traffic Congestion with Mul-ti-Source Data Fusion and Mining Techniques. Computers, Environment and Urban Systems, 77, Article ID: 101364. https://doi.org/10.1016/j.compenvurbsys.2019.101364 |
[13] | 黄子赫, 高尚兵, 蔡创新, 等. 多重处理的道路拥堵识别可视化融合分析[J]. 中国图象图形学报, 2020, 25(2): 409-418. |
[14] | 颜惠琴, 牛万红, 韩惠丽. 基于主成分分析构建指标权重的客观赋权法[J]. 济南大学学报(自然科学版), 2017, 31(6): 519-523. |
[15] | 万春圆, 叶明全, 姚传文, 等. 基于核模糊聚类优化算法的脑核磁共振图像分割研究[J]. 中国数字医学, 2020, 15(11): 10-15. |
[16] | Frey, B.J. and Dueck, D. (2007) Clustering by Passing Messages between Data Points. Science, 315, 972-976.
https://doi.org/10.1126/science.1136800 |
[17] | 车轮快讯. 2019最新数据: 全国最堵城市排名, 你的家乡上榜了吗? [EB/OL].
http://news.bitauto.com/hao/wenzhang/30960711, 2020-11-08. |
[18] | Mokbel, M.F., Alarabi, L., Bao, J., Eldawy, A., Magdy, M., Sarwat, M., Waytas, E. and Yackel, S. (2013) MNTG: An Extensible Web-Based Traffic Generator. Inter-national Symposium on Spatial and Temporal Databases, Munich, 21-23 August 2013, 38-55. https://doi.org/10.1007/978-3-642-40235-7_3 |