全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乌恰康苏河剖面上部沉积特征及其古海洋环境
Sedimentary Characteristics and Palaeo-Marine Environment of Upper Kangsu River Section in Wuqia

DOI: 10.12677/AG.2021.117093, PP. 971-983

Keywords: 塔西南盆地,元素地球化学,构造背景,物源分析
Southwestern Tarim Basin
, Geochemistry of Element, Tectonic Setting, Provenance Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

乌恰康苏河剖面位于我国油气勘探重点的塔里木盆地西南边缘,晚白垩世初期新特提斯洋海侵造成该区域发育大面积的海相沉积。本文以康苏河剖面为研究对象,开展岩石学、地球化学等方面的分析。依据岩石学和样品主、微量和稀土元素特征显示,研究区的沉积环境物源供应充分,母岩以沉积岩–花岗岩为主,伴有玄武岩,沉积环境为气候温暖、湿润、风化强烈、沉积速率较高、古生产力增加的浅海环境;应用TiO2-(Fe2O3 + MgO)、La-Th-Sc沉积构造背景判别图解得出,构造环境相对复杂,为大陆边缘沉积特征,且源岩类型主要为花岗岩与沉积岩的混合。
The Kangsu River section of Wuqia is located in the southwest margin of Tarim Basin which is the key oil and gas exploration area in China. The Neo-Tethys transgression in the early stage of Late Cretaceous resulted in the development of large area of Marine sediments in this area. In this paper, the Kangsu River section is taken as the research object to carry out petrological and geochemical analysis. According to petrology and the characteristics of major trace elements and rare earth elements of the sample, the sedimentary environment in the study area has sufficient provenance supply. The parent rocks are mainly sedimentary rock-granite accompanied by basalt, and the sedimentary environment is shallow sea environment with warm and humid climate, strong weathering and high deposition rate and increased palaeo-productivity; based on the discriminant diagram of TiO2-(Fe2O3 + MgO) and La-Th-Sc sedimentary tectonic background, the tectonic environment is relatively complex, the continental island arc type is dominant, and the sedimentary features of continental margin, and the source rock type is mainly the mixture of granite and sedimentary rock.

References

[1]  岳勇, 徐勤琪, 傅恒, 席党鹏. 塔里木盆地西南部白垩系-古近系沉积特征与储盖组合[J]. 石油实验地质, 2017, 39(3): 318-326.
[2]  杨海军, 沈建伟, 张丽娟, 李猛, 黄智斌, 王月. 塔里木盆地西南地区古近系卡拉塔尔组龙介类化石及其古生态[J]. 中国科学: 地球科学, 2012, 42(11): 1634-1646.
[3]  郝诒纯, 曾学鲁, 郭宪璞. 新疆塔里木盆地西部海相白垩系及其沉积环境探讨[J]. 地质学报, 1987(3): 205-217.
[4]  郝诒纯, 苏新. 塔里木盆地西部晚白垩世钙质超微化石[J]. 现代地质, 1988(3): 305-314.
[5]  黄永建, 王成善, 顾健. 白垩纪大洋缺氧事件: 研究进展与未来展望[J]. 地质学报, 2008, 81(1): 21-30.
[6]  席党鹏, 唐自华, 王雪娇, 覃祚焕, 曹文心, 江湉, 等. 塔里木盆地西部白垩纪——古近纪海相地层框架及对重大地质事件的记录[J]. 地学前缘, 2020, 27(6): 165-198.
[7]  郭宪璞, 丁孝忠, 何希贤, 李汉敏, 苏新, 彭阳. 塔里木盆地中新生代海侵和海相地层研究的新进展[J]. 地质学报, 2002, 76(3): 299-307.
[8]  郭宪璞, 叶留生, 李汉敏, 丁孝忠, 王大宁, 苏新. 塔里木盆地白垩纪地层对比及格架[J]. 中国西部油气地质, 2006, 2(2): 140-146.
[9]  郭宪璞. 塔里木盆地西部海相白垩系——第三系界线划分的研究[J]. 地球科学, 1990(3): 325-335.
[10]  Bhatia, M.R. (1983) Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91, 611-627.
https://doi.org/10.1086/628815
[11]  Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The Influence of Sediment Recycling and Basement Compositionon Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919-2940.
https://doi.org/10.1016/0016-7037(95)00185-9
[12]  郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999(1): 22-27.
[13]  焦养泉, 吕新彪, 王正海, 王敏芳. 从沉积到成岩两种截然不同的地质环境: 叶哈盆地砂岩型铀矿研究实例[J]. 地球科学: 中国地质大学学报, 2004, 29(5): 615-620.
[14]  熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414.
[15]  伊海生, 林金辉, 周恳恳, 李军鹏, 黄华谷. 可可西里地区中新世湖相叠层石成因及其古气候意义[J]. 矿物岩石, 2008, 28(1): 106-113.
[16]  谢建磊, 赵宝成, 战庆, 李晓. 元素地球化学在古环境和古生态研究中的应用综述[J]. 上海国土资源, 2015, 36(3): 64-70+74.
[17]  Chen, Z. and Zhang, W. (1997) Quaternary Stratigraphy and Trace-Element Indices of the Yangtze Delta, Eastern China, with Special Reference to Marine Transgressions. Quaternary Research, 47, 181-191.
https://doi.org/10.1006/qres.1996.1878
[18]  周长勇, 张启跃, 吕涛, 胡世学, 谢韬, 文芠, 等. 云南中三叠世罗平生物群产出地层的地球化学特征和沉积环境[J]. 地质论评, 2014, 60(2): 285-298.
[19]  Hatch, J.R. and leventhal, J.S. (1992) Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65-82.
https://doi.org/10.1016/0009-2541(92)90031-Y
[20]  Jones, B. and Manning, D.A.C. (1994) Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111, 111-129.
https://doi.org/10.1016/0009-2541(94)90085-X
[21]  Tribovill Ard, N., Alueo, T.J., Lyons, T. and Riboulleau, A. (2006) Trace Metals as Paleoredox and Paleo-Productivity Proxies: An Update. Chemical Geology, 232, 12-32.
https://doi.org/10.1016/j.chemgeo.2006.02.012
[22]  白忠凯, 谢李, 韩淼, 吕修祥, 孙智超, 李清瑶, 等. 塔里木盆地柯坪地区寒武系肖尔布拉克组下段古生产力研究[J]. 中国地质, 2018, 45(2): 227-236.
[23]  Mcmanus, J., Berelson, W.M., Klinkhammer, G.P., Johnson, K.S., Coale, K.H., Anderson, R.F., et al. (1998) Geochemistry of Barium in Marine Sediments: Implicadons for Its Use as a Paleo-Proxy. Geochimica et Cosmochimica Acta, 62, 3453-3473.
https://doi.org/10.1016/S0016-7037(98)00248-8
[24]  Pfeifer, K., Kasten, S., Hensen, C. and Schulz, H.D (2001) Reconstruction of Primary Productivity from the Barium Contents in Surface Sediments of the South Atlantic Ocean. Marine Geology, 177, 13-24.
https://doi.org/10.1016/S0025-3227(01)00121-9
[25]  Wagreich, M. and Neuhuber, S. (2005) Stratigraphy and Geochemistry of an Early Campanian Deepening Succession (Bibereck Formation, Uosau Group, Austria). Earth Science Frontiers, 12, 123-131.
[26]  李春荣, 陈开远. 潜江凹陷潜江组元素演化特征及其古气候意义[J]. 石油地质与工程, 2007, 21(6): 18-21.
[27]  Johannesson, K.H., Lyons, W.B. and Bird, D.A. (1994) Rare Earth Element Concentrations and Speciation in Alkaline Lakes from the Western USA. Geophysical Research Letters, 21, 773-776.
https://doi.org/10.1029/94GL00005
[28]  李双建, 肖开华, 沃玉进, 龙胜祥, 蔡立国, 等. 湘西、黔北地区志留系稀土元素地球化学特征及其地质意义[J]. 现代地质, 2008, 22(2): 273-280.
[29]  Debaar, H.J., Bacon, M.P., Brewer, P.G. and Bruland, K.W. (1985) Rare Earth Elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49, 1943-1959.
https://doi.org/10.1016/0016-7037(85)90089-4
[30]  Elderfield, H., Whitf Ield, M., Burton, J.D., Bacon, M.P., Liss, P.S., Charnock, H., et al. (1988) The Oceanic Chemistry of Rare Earth Elements. Philosophical Transactions of the Royal Society of London A, 325, 105-116.
https://doi.org/10.1098/rsta.1988.0046
[31]  Bhatia, M.R. (1985) Race Earth Element Geochemistry of Australian Paleozoic Greywackes and Mudrocks: Province and Tectonic Control. Sedimentary Geology, 45, 97-443.
https://doi.org/10.1016/0037-0738(85)90025-9
[32]  Bhatia, M.R. and Crook, K.A.W. (1986) Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basin. Contributions to Mineralogy and Petrology, 92, 181-193.
https://doi.org/10.1007/BF00375292
[33]  庄锡进, 肖立新, 杨军. 塔里木盆地西南沉积相展布特征及演化[J]. 新疆地质, 2002, 20(z1): 78-82.
[34]  Allegre, C.J. and Minster, J.F. (1978) Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38, 1-25.
https://doi.org/10.1016/0012-821X(78)90123-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133