|
移动群智感知中基于用户意愿的多任务分配模型
|
Abstract:
[1] | 郭斌, 翟书颖, 於志文, 等. 群智大数据: 感知、优选与理解[J]. 大数据, 2017(5): 60-72. |
[2] | Wang, J., Wang, F., Wang, Y., et al. (2018) HyTasker: Hybrid Task Allocation in Mobile Crowd Sensing. IEEE Transactions on Mobile Computing, 19, 598-611. |
[3] | Nesa, N. and Banerjee, I. (2019) SensorRank: An Energy Efficient Sensor Activation Algorithm for Sensor Data Fusion in Wireless Networks. IEEE Internet of Things Journal, 6, 2532-2539. https://doi.org/10.1109/JIOT.2018.2871469 |
[4] | Wang, J.T., Wang, L.Y., Wang, Y.S., Zhang, D.Q. and Kong, L.H. (2018) Task Allocation in Mobile Crowd Sensing: State-of-the-Art and Future Opportunities. IEEE Internet of Things Journal, 5, 3747-3757.
https://doi.org/10.1109/JIOT.2018.2864341 |
[5] | Estrada, R. (2017) A Crowd-Sensing Framework for Allocation of Time-Constrained and Location-Based Tasks. IEEE Transactions on Services Computing, 13, 769-785. |
[6] | Xiao, M., Wu, J., Huang, L., Cheng, R. and Wang, Y. (2017) Online Task Assignment for Crowdsensing in Predictable Mo-bile Social Networks. IEEE Transactions on Mobile Computing, 16, 2306-2320.
https://doi.org/10.1109/TMC.2016.2616473 |
[7] | Messaoud, R.B. and Ghamridoudane, Y. (2016) QEMSS: A Se-lection Scheme for Participatory Sensing Tasks. International Conference on Protocol Engineering (ICPE) and Interna-tional Conference on New Technologies of Distributed Systems (NTDS), Paris, 22-24 July 2015. https://doi.org/10.1109/NOTERE.2015.7293493 |
[8] | Wang, J., Wang, Y., Zhang, D., et al. (2018) Multi-Task Al-location in Mobile Crowd Sensing with Individual Task Quality Assurance. IEEE Transactions on Mobile Computing, 17, 2101-2113.
https://doi.org/10.1109/TMC.2018.2793908 |
[9] | Hu, Y., Dai, G., Fan, J., et al. (2016) BlueAer: A Fine-Grained Urban PM2.5 3D Monitoring System Using Mobile Sensing. Proceedings of the 35th IEEE International Conference on Computer Communications, San Francisco, 10-14 April 2016, 1-9. https://doi.org/10.1109/INFOCOM.2016.7524479 |
[10] | Azzam, R., Mizouni, R., Otrok, H., et al. (2016) GRS: A Group-Based Recruitment System for Mobile Crowd Sensing. Journal of Network and Computer Applications, 72, 38-50. https://doi.org/10.1016/j.jnca.2016.06.015 |
[11] | Liu, Y., Guo, B., Wang, Y., et al. (2016) TaskMe: Mul-ti-Task Allocation in Mobile Crowd Sensing. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, 12-16 September 2016, 403-414. https://doi.org/10.1145/2971648.2971709 |
[12] | Wang, L., et al. (2018) Mobile Crowd Sensing Task Optimal Allo-cation: A Mobility Pattern Matching Perspective. Frontiers of Computer Science, 12, 231-244. https://doi.org/10.1007/s11704-017-7024-6 |
[13] | Yu, H., Shen, Z., Miao, C., et al. (2013) A Reputation-Aware Decision-Making Approach for Improving the Efficiency of Crowdsourcing Systems. Adaptive Agents and Multi-Agents Systems, 13, 1315-1316. |
[14] | Vinyals, O., Fortunato, M. and Jaitly, N. (2015) Pointer Networks. In: International Conference on Neural Information Processing Systems, MIT Press, Cambridge, 1-9. |
[15] | Rashid, T., Samvelyan, M., De Witt, C.S., et al. (2018) QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. Journal of Machine Learning Research, 21, 1-51. |
[16] | Mnih, V., et al. (2015) Human-Level Control through Deep Reinforcement Learning. Nature, 518, 529-533.
https://doi.org/10.1038/nature14236 |