全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

干旱对构树幼苗生理代谢及抗性系统影响的性别差异
Gender Differences in Physiological Metabolism and Resistance System of Broussonetia Papyrifera Seedlings under Drought Stress

DOI: 10.12677/BR.2021.104069, PP. 550-559

Keywords: 构树,雌雄异株,干旱,生理代谢,抗氧化系统
Broussonetia papyrifera
, Dioecism, Drought, Physiological Metabolism, Antioxidant System

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究构树幼苗对干旱胁迫生理响应的性别差异,以扦插雌雄幼苗为材料,设轻、中、重度干旱和水分充足4个水分梯度,分别处理48 d后,测定光合指标、代谢指标、抗性指标及受伤害指标,分析干旱对构树幼苗生理代谢及抗性系统影响的性别差异。结果表明:1) 轻、中度干旱提高了雌雄幼苗的Pn、Gs和Ci,重度干旱抑制了现实Pn和潜在Pn,4个水分下,雄株的Pn、Gs、Tr、Ci均大于雌株(P < 0.05),潜在Pn小于雌株,干旱下雄株光合能力大于雌株;2) 轻度干旱提高了雌雄幼苗的SS、ST和SU含量,中干旱增加了NR活性,随干旱度增加PA含量增加,4个水分下,雄株的SS、ST、SU含量及NR活性均大于雌株(P < 0.05),PA含量小于雌株,干旱下雌株呼吸作用大于雄株;3) 随干旱度增加雌雄幼苗的SOD、POD和CAT活性显著提高,4个水分下,雌株抗氧化酶活性均大于雄株(P < 0.05),干旱下雌株抗旱投入大于雄株;4) 随干旱度增加雌雄幼苗的MDA和SP含量增大(P < 0.05),4个水分下,雌株MDA和SP含量均高于雄株(P < 0.05),雌株更易受到干旱胁迫在伤害。综上,雄株对干旱胁迫敏感且生理响应快于雌株,雌株抗旱投入大于雄株。抗旱生理性别差异随干旱度增加而缩小,雌株潜在光合速率和抗旱潜力大于雄株。轻度干旱利于构树幼苗生长发育。
In order to study the gender difference of physiological response of Broussonetia papyrifera seedlings to drought stress, four water gradients, mild, moderate and severe drought and water sufficiency (CK), were set up. After treatment of male and female seedlings 48 days respectively, photosynthetic index, metabolic index, resistance index and injury index were measured to ana-lyze the gender difference of drought on physiological metabolism and resistance system of B. papyrifera seedlings. The results showed that: 1) Mild and moderate drought increased Pn, Gs and Ci, while severe drought inhibited Pn and potential Pn of male and female seedlings. Under four water conditions, Pn, Gs, Tr and Ci of males were higher than females (P < 0.05), while Pn was lower than females, so photosynthetic capacity of males was higher than females; 2) mild drought increased SS, ST and Su contents of male and female seedlings, while medium drought increased NR activity, but PA content increased with drought degree. The SS, ST, SU contents and NR activities of males were higher than females (P < 0.05), and PA content was lower than females under 4 water conditions, indicating that the respiration of females was higher than males under drought; 3) The activities of SOD, POD and CAT of male and female seedlings were increased with drought degree significantly. The activities of antioxidant enzymes of females were higher than males under 4 water conditions (P < 0.05), so drought resistance input of females was higher than males; 4) with drought degree increasing, MDA and SP contents of male and female seedlings were increased (P < 0.05). Under 4 water conditions, MDA and SP contents of females were higher than males (P < 0.05), which showed that the females were more vulnerable to drought than males. In conclusion, males were sensitive to drought stress and physiological response faster than females, but females were more input to resistant drought than males. The gender

References

[1]  郭海燕, 段婧, 刘金平, 等. 温度对雌雄葎草生理代谢及保护酶系统影响的性别差异[J]. 草业学报, 2017, 26(10): 198-206.
[2]  白志英, 李存东, 刘渊. 干旱胁迫下小麦叶片脯氨酸和蛋白质含量变化与染色体的关系[J]. 植物遗传资源学报, 2007, 8(3): 325-330.
[3]  胥晓, 杨帆, 尹春英, 等. 雌雄异株植物对环境胁迫响应的性别差异研究进展[J]. 应用生态学报, 2007, 18(11): 2626-2631.
[4]  马少薇, 刘果厚, 王蕾, 等. 干旱胁迫对黄柳雌雄扦插苗生长和生理特性的影响[J]. 西北植物学报, 2019, 9(7): 1250-1258.
[5]  陈娟, 李春阳. 环境胁迫下雌雄异株植物的性别影响差异及竞争关系[J]. 应用与环境生物学报. 2014, 20(4): 743-750.
[6]  刘航江, 宗人旭, 刘金平, 等. 草地群落类型对乳白香青种群特征和雌雄株形态及抗性的影响[J]. 草业学报, 2018, 27(10): 113-124.
[7]  何梅, 孟明, 施大伟, 等. 雌雄异株植物对干旱胁迫响应的性别差异[J]. 植物资源与环境学报, 2015, 24(1): 99-106.
[8]  刘金平, 游明鸿, 张丽慧, 等. 不同支持物对攀援植物——葎草雌雄株光合特性及生物量结构的影响[J]. 生态学报, 2015, 35(18): 6032-6040.
[9]  Germino, M.J., Smith, W.K. and Resor, A.C. (2002) Conifer Seedling Distribution and Survival in an Alpine-Treeline Ecotone. Plant Ecology, 162, 157-168.
https://doi.org/10.1023/A:1020385320738
[10]  Augspurger, C.K. and Kelly, C.K. (1984) Pathogen Mortality of Tropical Tree Seedlings: Experimental Studies of the Effects of Dispersal Distance, Seedling Density, and Light Conditions. Oecologia, 61, 211-217.
https://doi.org/10.1007/BF00396763
[11]  谢春平. 城市近郊构树群落组成与结构分析——以南京仙林地区为例[J]. 四川农业大学学报, 2015, 33(4): 357-363.
[12]  张秋玉, 李远发, 梁芳. 构树资源研究利用现状及其展望[J]. 广西农业科学, 2009, 40(2): 217-220.
[13]  张婉, 赵运林, 唐永成. 构树对干旱、盐碱和重金属胁迫的适应机制研究进展[J]. 植物学研究, 2017, 6(5): 325-332.
[14]  叶波, 吴永波, 邵维, 等. 高温干旱复合胁迫及复水对构树幼苗光合特性和叶绿素荧光参数的影响[J]. 生态学杂志, 2014, 33(9): 2343-2349.
[15]  杨帆, 丁菲, 杜天真. 盐胁迫下构树幼苗各器官中K+、Ca2+、Na+和Cl-含量分布及吸收特征[J]. 应用生态学报, 2009, 20(4): 767-772.
[16]  蒋泽平, 肖小君, 何开跃. NaCl胁迫对构树、光叶楮生理及细胞结构的影响[J]. 南京林业大学学报(自然科学版), 2010, 34(3): 77-82.
[17]  任媛媛, 翟晓巧, 刘艳萍. 6个构树无性系叶片解剖结构与抗旱性的关系[J]. 陕西农业科学, 2015, 61(12): 17-21.
[18]  赵云云, 闫毓秀. 雌雄构树过氧化物同工酶的比较研究[J]. 首都师范大学学报(自然科学版), 1996, 17(2): 84-87.
[19]  蔡汝, 陶俊, 陈鹏. 银杏雌雄株叶片光合特性、蒸腾速率及产量的比较研究[J]. 落叶果树, 2000, 32(1): 14-16.
[20]  李国粱, 林伯年, 沈德绪. 杨梅雌雄株同工酶和酚类物质的鉴别[J]. 浙江农业大学报, 1995, 21(1):22-26.
[21]  李瑞丽, 卢龙斗, 高武军, 等. 雌雄异株植物性别鉴定的研究进展[J]. 广西植物, 2006, 26(4): 387-391.
[22]  应振土, 李曙轩. 瓠瓜与黄瓜的性别表达和内源乙烯与氧化酶活性的关系[J]. 园艺学报, 1990, 17(1): 51-57.
[23]  熊庆娥. 植物生理实验教材[M]. 成都: 四川科学技术出版社, 2003.
[24]  王学奎. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2006.
[25]  Blum, A. (1996) Crop Response to Drought and the Interpretation of Adaptation. Plant Growth Regulation, 20, 135-148.
https://doi.org/10.1007/BF00024010
[26]  Zhang, H.H., Zhang, X.L., Xu, N., et al. (2011) Effects of Exogenous CaCl2 on the Functions of Flue-Cured Tobacco Seedlings Leaf Photosystem under Drought Stress. Chinese Journal of Applied Ecology, 22, 1195-1200.
[27]  Deng, Z.Y., Zhang, Q., Xin, J.W., et al. (2008) Progress in Response of Arid Eco-Environment and Water Resource to Global Warming. Journal of Glaciology and Geocryology, 30, 57-63.
[28]  韩刚, 赵忠. 不同土壤水分下4种沙生灌木的光合光响应特性[J]. 生态学报, 2010, 30(15): 4019-4026.
[29]  赵丽, 贺玉晓, 魏雅丽, 等. 干热河谷区土壤水分胁迫下扭黄茅光合作用光响应过程及其模拟[J]. 中国农学通报, 2016, 32(17): 115-121.
[30]  刘金平, 范宣, 游明鸿, 等. 老芒麦种子发育过程中生殖枝中糖分、丙酮酸含量及硝酸还原酶活性变化[J]. 草业学报, 2015, 24(5): 69-77.
[31]  Vandeputte, G.E. and Delcour, J.A. (2004) From Sucrose to Starch Granule to Starch Physical Behavior: A Focus on Rice Starch. Carbohydrate Polymers, 58, 245-266.
https://doi.org/10.1016/j.carbpol.2004.06.003
[32]  刘金平, 游明鸿, 段婧, 等. 水分胁迫下雌雄异株植物葎草繁殖策略的可塑性调节[J]. 草业学报, 2015, 24(3): 226-232.
[33]  Ching, T.M., Crane, J.M. and Stamp, D.L. (1974) Adenylate Energy Pool and Energy Change in Maturing Rape Seed. Plant Physiology, 54, 748-751.
https://doi.org/10.1104/pp.54.5.748
[34]  马春晖, 韩建国, 孙洁峰, 等. 结缕草种子发育过程中生理生化变化的研究[J]. 草业学报, 2009, 18(6): 174-179.
[35]  Ramanjulu, S. and Bartels, D. (2002) Drought and Desiccation Induced Modulation of Gene Expression in Plants. Plant Cell & Environment, 25, 141-151.
https://doi.org/10.1046/j.0016-8025.2001.00764.x
[36]  唐钢梁, 李向义, 林丽莎, 等. 骆驼刺在不同遮阴下的水分状况变化及其生理响应[J]. 植物生态学报, 2013, 37(4): 354-364.
[37]  刘红云, 梁宗锁, 刘淑明, 等. 持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J]. 西北林学院学报, 2007, 22(3):55-59.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133