|
Optoelectronics 2021
椭圆空芯正常色散保偏光纤的数值研究
|
Abstract:
在高掺锗纤芯中引入椭圆空气孔可以为两个正交的偏振基模提供高双折射,通过优化光纤结构参数,在1000 nm到3000 nm波长范围内得到了低且平坦的色散曲线,非线性系数高达0.01 ps/nm km,双折射高达10?3量级。数值结果表明,峰值功率为150 kW,中心波长为1920 nm,宽度0.1 ps的泵浦脉冲分别沿慢轴和快轴偏振方向耦合到长度为0.5 m的光纤中,输出光谱都可以在?20 dB处覆盖一个倍频(波长范围是900~2500 nm),同时,输出脉冲在整个波长范围内具有极好的相干性。
The heavily Ge-doped silica fiber with the elliptical air hole in the core can offer high birefringence for the two orthogonal polarized fundamental modes. The nonlinear parameter up to 0.01 W?1/m can be obtained by optimizing the structure parameters, while the birefringence value can reach up to the order of 10?3. The numerical results indicate that when the 1920 nm 0.1 ps pump pulse with the 150 kW peak power is coupled into the 0.5 m fiber and polarized along the slow- and fast axes, the output spectra can cover over one octave in the wavelength range of around 900~2500 nm at ?20 dB. At the same time, the output pulse has excellent coherence in the whole wavelength range.
[1] | Wang, C., Kim, J., Jin, C.T., et al. (2012) Near Infrared Spectroscopy in Optical Coherence Tomography. Journal of Near Infrared Spectroscopy, 20, 237-247. https://doi.org/10.1255/jnirs.975 |
[2] | Alexis, L., Alessandro, T., Vincent, C., et al. (2012) Compact Supercontinuum Sources and Their Biomedical Applications. Optical Fiber Technology, 18, 375-378. https://doi.org/10.1016/j.yofte.2012.08.003 |
[3] | Tu, H. and Boppart, S.A. (2013) Coherent Fiber Supercontinuum for Biophotonics. Laser & Photonics Reviews, 7, 628-645. https://doi.org/10.1002/lpor.201200014 |
[4] | Levick, A.P., Greenwell, C.L., Ireland, J., et al. (2014) Spectral Radiance Source Based on Supercontinuum Laser and Wavelength Tunable Bandpass Filter: The Spectrally Tunable Absolute Irradiance and Radiance Source. Applied Optics, 53, 3508-3519. https://doi.org/10.1364/AO.53.003508 |
[5] | Heidt, A.M. (2010) Pulse Preserving Flat-Top Supercontinuum Generation in All-Normal Dispersion Photonic Crystal Fibers. Journal of the Optical Society of America B, 27, 550-559. https://doi.org/10.1364/JOSAB.27.000550 |
[6] | Huang, C.L., Liao, M.S., Bi, W.J., et al. (2018) Ultraflat, Broadband, and Highly Coherent Supercontinuum Generation in All-Solid Microstructured Optical Fibers with All-Normal Dispersion. Photonics Research, 6, 601-608. https://doi.org/10.1364/PRJ.6.000601 |
[7] | Klimczak, M., Michalik, D., St?pniewski, G., et al. (2019) Coherent Supercontinuum Generation in Tellurite Glass Regular Lattice Photonic Crystal Fibers. Journal of the Optical Society of America B, 36, A112-A124.
https://doi.org/10.1364/JOSAB.36.00A112 |
[8] | Saini, T.S., Kumar, A. and Sinha, R.K. (2015) Broadband Mid-Infrared Supercontinuum Spectra Spanning 2-15 μm Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber. Journal of Lightwave Technology, 33, 3914-3920. https://doi.org/10.1109/JLT.2015.2418993 |
[9] | Hoang, V.T., Rafa?, K., Adam, F., et al. (2019) Supercontinuum Generation in an All-Normal Dispersion Large Core Photonic Crystal Fiber Infiltrated with Carbon Tetrachloride. Optical Materials Express, 9, 2264-2278.
https://doi.org/10.1364/OME.9.002264 |
[10] | Wang, C. and Bache, M. (2015) Coherent Near-mid-IR Supercontinuum Generation in Highly Nonlinear Multi-Cladding Liquid-Core Fiber Designed for Flat Normal Dispersion. |
[11] | Wang, C. and Li, J. (2018) Saturable Absorber Based on the CS2-Filled Dual-Core Fiber Coupler. Optics Express, 26, 22144-22159. https://doi.org/10.1364/OE.26.022144 |
[12] | Wang, C., Jia, C., Yang, J., et al. (2020) Numerical Simulation of the CS2-Filled Active Fiber with Flattened All-Normal Dispersion. IEEE Photonics Journal. https://doi.org/10.1109/JPHOT.2020.3044918 |
[13] | Wang, C., Wang, M. and Wu, J. (2015) Heavily Germanium-Doped Silica Fiber with a Flat Normal Dispersion Profile. IEEE Photonics Journal, 7, Article ID: 7101110. https://doi.org/10.1109/JPHOT.2015.2409232 |
[14] | Anashkina, E.A., Andrianov, A.V., Koptev, M.Y., et al. (2012) Generating Tunable Optical Pulses over the Ultrabroad Range of 1.6-2.5 μm in GeO2-Doped Silica Fibers with an Er: Fiber Laser Source. Optics Express, 20, 27102-27107.
https://doi.org/10.1364/OE.20.027102 |
[15] | Anashkina, E.A., Andrianov, A.V., Koptev, M.Y., et al. (2014) Towards Mid-Infrared Supercontinuum Generation with Germane-Silicate Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 20, Article ID: 7600608.
https://doi.org/10.1109/JSTQE.2014.2321286 |
[16] | Zhang, M., Kelleher, E.J.R., Runcorn, T.H., et al. (2013) Mid-Infrared Raman-Soliton Continuum Pumped by a Nanotube-Mode-Locked Sub-Picosecond Tm-Doped MOPFA. Optics Express, 21, 23261-23271.
https://doi.org/10.1364/OE.21.023261 |
[17] | Dianov, E.M. and Mashinsky, V.M. (2005) Germania-Based Core Optical Fibers. Journal of Lightwave Technology, 23, 3500-3508. https://doi.org/10.1109/JLT.2005.855867 |
[18] | Liu, Y., Zhao, Y., Lyngso, J., et al. (2015) Suppressing Short-Term Polarization Noise and Related Spectral Decoherence in All-Normal Dispersion Fiber Supercontinuum Generation. Journal of Lightwave Technology, 33, 1814-1820.
https://doi.org/10.1109/JLT.2015.2397276 |
[19] | Tarnowski, K., Martynkien, T., Mergo, P., et al. (2017) Polarized All-Normal Dispersion Supercontinuum Reaching 2.5 μm Generated in a Birefringent Microstructured Silica Fiber. Optics Express, 25, 27452-27463.
https://doi.org/10.1364/OE.25.027452 |
[20] | Genier, E., Ghosh, A.N., Bobba, S., et al. (2020) Cross-Phase Modulation Instability in PM ANDi Fiber-Based Supercontinuum Generation. Optics Letters, 45, 3545-3548. https://doi.org/10.1364/OL.397106 |
[21] | Dobrakowski, D., Rampur, A., Stpniewski, G., et al. (2019) Development of Highly Nonlinear Polarization-Maintaining Fibers with Normal Dispersion across Entire Transmission Window. Journal of Optics, 21, Article ID: 015504.
https://doi.org/10.1088/2040-8986/aaf4af |
[22] | Ghosh, A.N., Meneghetti, M., Petersen, C.R., et al. (2019) Chal-cogenide-Glass Polarization-Maintaining Photonic Crystal Fiber for Mid-Infrared Supercontinuum Generation. Journal of Physics: Photonics, 1, Article ID: 044003.
https://doi.org/10.1088/2515-7647/ab3b1e |
[23] | Fleming, J.M. (1984) Dispersion in GeO2-SiO2 Glasses. Applied Optics, 23, 4486-4493.
https://doi.org/10.1364/AO.23.004486 |
[24] | Yuri, Y. and Mavritsky, A. (2007) D-Scan Measurement of Non-linear Refractive Index in Fibers Heavily Doped with GeO2. Optics Letters, 32, 3257-3259. https://doi.org/10.1364/OL.32.003257 |
[25] | L?gsgaard, J. and Tu, H. (2013) How Long Wavelengths Can One Extract from Silica-Core Fibers? Optics Letters, 38, 4518-4521. https://doi.org/10.1364/OL.38.004518 |
[26] | Dudley, J.M. and Taylor, J.R. (2010) Supercontinuum Generation in Optical Fibers. Cambridge University, Cambridge.
https://doi.org/10.1017/CBO9780511750465 |
[27] | Agrawal, G.P. (2007) Nonlinear Fiber Optics. 4th Edition, Elsevier, Amsterdam. |
[28] | Dudley, J., Genty, G. and Coen, S. (2006) Supercontinuum Generation in Photonic Crystal Fiber. Reviews of Modern Physics, 78, 1135-1184. https://doi.org/10.1103/RevModPhys.78.1135 |