All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Research Progress on Environmental Behavior and Biological Effects of Metal Nanoparticles

DOI: 10.12677/NAT.2021.113013, PP. 100-108

Keywords: 金属纳米颗粒,环境行为,生物效应,植物,微生物
Metal Nanoparticles
, Environmental Behavior, Biological Effects, Botany, Microorganism

Full-Text   Cite this paper   Add to My Lib


With the development of nanotechnology, metal nanoparticles have been widely used in various industries due to their good physical and chemical properties, resulting in a large amount of accumulation in the soil environment. The metal nanoparticles released into the soil will have a series of environmental behaviors, which will affect the soil ecosystem. Therefore, it is necessary to study the environmental behavior and biological effects of metal nanoparticles in order to fully understand the impact of metal nanoparticles on soil ecosystem and their migration and transformation in soil environment. This paper reviewed the environmental behavior of metal nanoparticles in soil environment and their biological effects on plants and microorganisms in soil. On this basis, the environmental behavior and biological effects of metal nanoparticles have been prospected.


[1]  Park, B., Donaldson, K., Duffin, R., Tran, L., Kelly, F., Mudway, I., et al. (2008) Hazard and Risk Assessment of a Na-noparticulate Cerium Oxide-Based Diesel Fuel Additive—A Case Study. Inhalation Toxicology, 20, 547-566.
[2]  Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., et al. (2016) Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnology Science and Applications, 9, 49-67.
[3]  El Hadri, H., Louie, S.M. and Hackley, V.A. (2018) Assessing the In-teractions of Metal Nanoparticles in Soil and Sediment Matrices—A Quantitative Analytical Multi-Technique Approach. Environmental Science: Nano, 5, 203-214.
[4]  Goswami, L., Kim, K.-H., Deep, A., Das, P., Bhattacharya, S.S., Kumar, S., et al. (2017) Engineered Nano Particles: Nature, Behavior, and Effect on the Environment. Journal of Environmental Management, 196, 297-315.
[5]  Chen, H. (2018) Metal Based Nanoparticles in Agricultural System: Behavior, Transport, and Interaction with Plants. Chemical Speciation & Bioavailability, 30, 123-134.
[6]  Dickson, D., Liu, G., Li, C., Tachiev, G. and Cai, Y. (2012) Dispersion and Stability of Bare Hematite Nanoparticles: Effect of Dispersion Tools, Nanoparticle Concentration, Humic Acid and Ionic Strength. Science of the Total Environment, 419, 170-177.
[7]  Maisto, G., Manzo, S., De Nicola, F., Carotenuto, R., Rocco, A. and Alfani, A. (2011) Assessment of the Effects of Cr, Cu, Ni and Pb Soil Contamination by Ecotoxicological Tests. Journal of Environmental Monitoring, 13, 3049-3056.
[8]  Miao, A.-J., Zhang, X.-Y., Luo, Z., Chen, C.-S., Chin, W.-C., Santschi, P.H. et al. (2010) Zinc Oxide Engineered Nanoparticles Dissolution and Toxicity to Marine Phytoplankton. Environ-mental Toxicology and Chemistry, 29, 2814-2822.
[9]  Mortimer, M., Kasemets, K. and Kahru, A. (2010) Toxicity of ZnO and CuO Nanoparticles to Ciliated Protozoa Tetrahymena thermophila. Toxicolo-gy, 269, 182-189.
[10]  Sharma, V.K., Siskova, K.M., Zboril, R. and Gardea-Torresdey, J.L. (2014) Organic-Coated Silver Nanoparticles in Biological and Environmental Conditions: Fate, Stability and Toxicity. Advances in Colloid and Interface Science, 204, 15-34.
[11]  Misra, S.K., Dybowska, A., Berhanu, D., No?le Croteau, M., Luoma, S.N., Boccaccini, A.R., et al. (2012) Isotopically Modified Nanoparticles for Enhanced Detection in Bioaccumulation Studies. Environmental Science & Technology, 46, 1216-1222.
[12]  Bian, S.-W., Mudunkotuwa, I.A., Rupasinghe, T. and Grassian, V.H. (2011) Aggregation and Dissolution of 4nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir, 27, 6059-6068.
[13]  Zhu, X., Zhou, J. and Cai, Z. (2011) TiO2 Nanoparticles in the Marine Environment: Impact on the Toxicity of Tributyltin to Abalone (Haliotis diversicolor supertexta) Embryos. Envi-ronmental Science & Technology, 45, 3753-3758.
[14]  Jia, J., Li, F., Zhai, S., Zhou, H., Liu, S., Jiang, G., et al. (2017) Suscepti-bility of Overweight Mice to Liver Injury as a Result of the ZnO Nanoparticle-Enhanced Liver Deposition of Pb2+. Envi-ronmental Science & Technology, 51, 1775-1784.
[15]  Kim, I., Lee, B.-T., Kim, H.-A., Kim, K.-W. and Kim, S.D. (2016) Citrate Coated Silver Nanoparticles Change Heavy Metal Toxicities and Bioaccumulation of Daphnia magna. Chemosphere, 143, 99-105.
[16]  Wang, F., Yao, J., Liu, H., Chen, H., Yi, Z., Yu, Q., et al. (2015) Cu and Cr Enhanced the Effect of Various Carbon Nanotubes on Microbial Communities in an Aquatic Environ-ment. Journal of Hazardous Materials, 292, 137-145.
[17]  Deng, R., Lin, D.H., Zhu, L.Z., Majumdar, S., White, J.C., Gardea-Torresdey, J.L., et al. (2017) Nanoparticle Interactions with Co-Existing Contaminants: Joint Toxicity, Bioaccu-mulation and Risk. Nanotoxicology, 11, 591-612.
[18]  Moussa, H., Merlin, C., Dezanet, C., Balan, L., Medjahdi, G., Ben-Attia, M., et al. (2016) Trace Amounts of Cu2+ Ions Influence ROS Production and Cytotoxicity of ZnO Quantum Dots. Journal of Hazardous Materials, 304, 532-542.
[19]  Wang, Y., Peng, C., Fang, H., Sun, L., Zhang, H., Feng, J., et al. (2015) Mitigation of Cu(II) Phytotoxicity to Rice (Oryza sativa) in the Presence of TiO2 and CeO2 Nanoparticles Combined with Humic Acid. Environmental Toxicology and Chemistry, 34, 1588-1596.
[20]  Deng, H., McShan, D., Zhang, Y., Sinha, S.S., Arslan, Z., Ray, P.C., et al. (2016) Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Anti-biotics. Environmental Science & Technology, 50, 8840-8848.
[21]  Rizwan, M., Ali, S., Qayyum, M.F., Sik Ok, Y., Adrees, M., Ibrahim, M., et al. (2017) Effect of Metal and Metal Oxide Nano-particles on Growth and Physiology of Globally Important Food Crops: A Critical Review. Journal of Hazardous Mate-rials, 322, 2-16.
[22]  Lin, D. and Xing, B. (2007) Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environmental Pollution, 150, 243-250.
[23]  El-Temsah, Y.S. and Joner, E.J. (2012) Impact of Fe and Ag Nanoparticles on Seed Germination and Differences in Bioavailability during Exposure in Aqueous Suspension and Soil. Environmental Toxicology, 27, 42-49.
[24]  Feizi, H., Moghaddam, P.R., Shahtahmassebi, N. and Fotovat, A. (2012) Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146, 101-106.
[25]  Tripathi, D.K., Shweta, Singh, S., Singh, S., Pandey, R., Singh, V.P., et al. (2017) An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiology and Biochemistry, 110, 2-12.
[26]  Frazier, T.P., Burklew, C.E. and Zhang, B. (2014) Titanium Di-oxide Nanoparticles Affect the Growth and MicroRNA Expression of Tobacco (Nicotiana tabacum). Functional & Inte-grative Genomics, 14, 75-83.
[27]  Kouhi, S.M.M., Lahouti, M., Ganjeali, A. and Entezari, M.H. (2015) Long-Term Exposure of Rapeseed (Brassica napus L.) to ZnO Nanoparticles: Anatomical and Ultrastructural Responses. Environmental Science and Pollution Research, 22, 10733-10743.
[28]  Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H.M., He, X., Mbarki, S., et al. (2017) Impact of Metal and Metal Oxide Nanoparticles on plant: A Critical Review. Frontiers in Chemistry, 5, Article No. 78.
[29]  Kaveh, R., Li, Y.-S., Ranjbar, S., Tehrani, R., Brueck, C.L. and Van Aken, B. (2013) Changes in Arabidopsis thaliana Gene Expression in Response to Silver Nanoparticles and Silver Ions. Environmental Science & Technology, 47, 10637-10644.
[30]  Yasmeen, F., Raja, N.I., Razzaq, A. and Komatsu, S. (2017) Proteomic and Physiological Analyses of Wheat Seeds Exposed to Copper and Iron Nanoparticles. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1865, 28-42.
[31]  Singh, J. and Lee, B.-K. (2016) Influence of Nano-TiO2 Parti-cles on the Bioaccumulation of Cd in Soybean Plants (Glycine max): A Possible Mechanism for the Removal of Cd from the Contaminated Soil. Journal of Environmental Management, 170, 88-96.
[32]  Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. and Ghassempour, A. (2013) Effect of Silver Nanoparticles on Oryza sativa L. and Its Rhizosphere Bacteria. Ecotoxicology and Environmental Safety, 88, 48-54.
[33]  Perreault, F., Samadani, M. and Dewez, D. (2014) Effect of Soluble Copper Released from Copper Oxide Nanoparticles Solubilisation on Growth and Photosynthetic Processes of Lemna gibba L. Nanotoxicology, 8, 374-382.
[34]  Tan, W., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2018) Interaction of Titanium Dioxide Nanoparticles with Soil Components and Plants: Current Knowledge and Future Research Needs—A Critical Review. Environmental Science: Nano, 5, 257-278.
[35]  Zhao, Y., Mao, G., Han, S. and Gao, L. (2015) Effect of Namomaterials on Heavy Metal Transport in Alkaline Soil. Soil & Sediment Contamination, 24, 694-703.
[36]  Nair, P.M.G. and Chung, I.M. (2014) Impact of Copper Oxide Nanoparticles Exposure on Arabidopsis thaliana Growth, Root System Development, Root Lignificaion, and Mo-lecular Level Changes. Environmental Science and Pollution Research, 21, 12709-12722.
[37]  Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2011) Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. Journal of Agricultural and Food Chemistry, 59, 3485-3498.
[38]  Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., et al. (2015) Translocation and Biotransformation of CuO Nanoparticles in Rice (Oryza sativa L.) Plants. Environmental Pollution, 197, 99-107.
[39]  Servin, A.D., Castillo-Michel, H., Hernandez-Viezcas, J.A., Corral Diaz, B., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2012) Synchrotron Micro-XRE and Micro-XANES Confirmation of the Uptake and Translocation of TiO2 Nanoparticles in Cucumber (Cucumis sativus) Plants. Environ-mental Science & Technology, 46, 7637-7643.
[40]  Zhu, Z.-J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O.R., et al. (2012) Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environ-mental Science & Technology, 46, 12391-12398.
[41]  Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., Cotte, M., Rico, C., Peralta-Videa, J.R., et al. (2013) In Situ Synchrotron X-Ray Fluorescence Mapping and Speciation of CeO2 and ZnO Nanoparticles in Soil Cultivated Soybean (Glycine max). Acs Nano, 7, 1415-1423.
[42]  Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J.C., et al. (2012) Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (Zea mays L.). Environmental Science & Technology, 46, 4434-4441.
[43]  Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., et al. (2012) Accumulation, Translocation and Impact of TiO2 Nanoparticles in Wheat (Triticum aestivum spp.): Influence of Diameter and Crystal Phase. Science of the Total Environment, 431, 197-208.
[44]  Schloter, M., Dilly, O. and Munch, J.C. (2003) Indicators for Evaluating Soil Quality. Agriculture Ecosystems & Environment, 98, 255-262.
[45]  Schimel, J.P. and Schaeffer, S.M. (2012) Microbial Control over Carbon Cycling in Soil. Frontiers in Microbiology, 3, Article No. 348.
[46]  Colman, B.P., Arnaout, C.L., Anciaux, S., Gunsch, C.K., Hochella Jr., M.F., Kim, B., et al. (2013) Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Re-sponses under Realistic Field Scenario. PLoS ONE, 8, e57189.
[47]  Hansch, M. and Emmerling, C. (2010) Effects of Silver Nano-particles on the Microbiota and Enzyme Activity in Soil. Journal of Plant Nutrition and Soil Science, 173, 554-558.
[48]  Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J. and Guo, H. (2011) TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. Journal of Envi-ronmental Monitoring, 13, 822-828.
[49]  Simonin, M., Guyonnet, J.P., Martins, J.M.F., Ginot, M. and Richaume, A. (2015) Influence of Soil Properties on the Toxicity of TiO2 Nanoparticles on Carbon Mineralization and Bacterial Abundance. Journal of Hazardous Materials, 283, 529-535.
[50]  Shin, Y.-J., Kwak, J.I. and An, Y.-J. (2012) Evidence for the Inhibitory Effects of Silver Nanoparticles on the Activities of Soil Exoenzymes. Chemosphere, 88, 524-529.
[51]  He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N. and Lin, X. (2011) The Impact of Iron Oxide Magnetic Nanoparticles on the Soil Bacterial Community. Journal of Soils and Sedi-ments, 11, 1408-1417.
[52]  Torsvik, V. and Ovreas, L. (2002) Microbial Diversity and Func-tion in Soil: From Genes to Ecosystems. Current Opinion in Microbiology, 5, 240-245.
[53]  Kumar, N., Shah, V. and Walker, V.K. (2011) Perturbation of an Arctic Soil Microbial Community by Metal Nanoparticles. Journal of Hazardous Materials, 190, 816-822.
[54]  Ben-Moshe, T., Frenk, S., Dror, I., Dror, M. and Berkowitz, B. (2013) Effects of Metal Oxide Nanoparticles on Soil Properties. Chemosphere, 90, 640-646.
[55]  Ge, Y., Schimel, J.P. and Holden, P.A. (2011) Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities. Environmental Science & Technolo-gy, 45, 1659-1664.
[56]  Nogueira, V., Lopes, I., Rocha-Santos, T., Santos, A.L., Santos, A.L., Rasteiro, G.M., Antunes, F., et al. (2012) Impact of Organic and Inorganic Nanomaterials in the Soil Mi-crobial Community Structure. Science of the Total Environment, 424, 344-350.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413