全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于掺铒光纤激光器的光频梳研究
Research on Optical Frequency Comb Based on Erbium-Doped Fiber Laser

DOI: 10.12677/OE.2021.112009, PP. 69-77

Keywords: 锁模激光器,光功率放大,频率锁定,飞秒激光,光频梳
Mode-Locked Laser
, Optical Power Amplification, Frequency Lock, Femtosecond Laser, Optical Frequency Comb

Full-Text   Cite this paper   Add to My Lib

Abstract:

光纤激光器是二十世纪科学技术的一项重大成就,它具有低损耗、低功耗、结构简单、集成度高等优点。文章主要对基于掺铒光纤激光器的光频梳系统进行设计,搭建了全光纤结构的飞秒激光器,并且完成了光功率放大和重复频率锁定的实验研究。在实验中搭建的飞秒激光器的输出功率为0.63 mW,重复频率为90 MHz,光谱宽度为12.49 nm,通过放大器放大后光功率达到45 mW,光谱宽度展宽到42 nm,最后通过PID控制器,将激光器的重复频率锁定到稳定的参考信号源上,在0~1000 s记录时间内,记录数据的标准差为156 μHz。通过以上实验,文章不仅实现了对飞秒脉冲的光放大,还完成了对飞秒激光器重复频率的锁定,搭建出了一台可用于精密测量等领域的实用型飞秒光频梳。
Fiber laser is a major achievement of science and technology in the twentieth century. It has the advantages of low loss, low power consumption, simple structure and high integration. This article mainly designs an optical frequency comb system based on erbium-doped fiber laser, builds a femtosecond laser with all-fiber structure, and completes experimental research on optical power amplification and repetitive frequency locking. The output power of the femtosecond laser built in the experiment is 0.63 mW, the repetition frequency is 90 MHz, the spectral width is 12.49 nm, the optical power is amplified by the amplifier to 45 mW, and the spectral width is expanded to 42 nm. Finally, the PID controller is used to lock the repetition frequency of the laser to a stable reference signal source. The standard deviation of the recorded data is 156 μHz during the recording time from 0 to 1000 s. Through the above experiments, this paper not only realized the optical amplification of the femtosecond pulse, but also completed the lock of the repetition frequency of the femtosecond laser, and built a practical femtosecond optical frequency comb that can be used in precision measurement and other fields.

References

[1]  Ruehl, A., Marcinkevicius, A., Ferman, M.E., et al. (2010) 80W, 120fs Yb-Fiber Frequency Comb. Optics Letters, 35, 3015-3017.
https://doi.org/10.1364/OL.35.003015
[2]  Arman, C., Dylan, C.Y., Thomas, K.A., et al. (2012) Direct Frequency Comb Spectroscopy in the Extreme Ultraviolet. Nature, 482, 68-71.
https://doi.org/10.1038/nature10711
[3]  Pupeza, I., Holzberger, S., Eidam, T., et al. (2013) Compact High-Repetition-Rate Source of Coherent 100 eV Radiation. Nature Photonics, 7, 608-612.
https://doi.org/10.1038/nphoton.2013.156
[4]  Pupza, I., H?gner, M., Weitenberg, J., et al. (2014) Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields. Physics Review Letters, 112, Article ID: 103902.
https://doi.org/10.1103/PhysRevLett.112.103902
[5]  Zhao, J., Zhang, C., Miao, C., et al. (2014) Switchabl Narrow Linewidth Single-Longitudinal Mode Erbium Fiber Laser by Using Saturable-Absorber Filter and Cavity Loss Control. Optics Communications, 331, 229-234.
https://doi.org/10.1016/j.optcom.2014.06.022
[6]  Zhang, Q., Hou, Y., Qi, S., et al. (2017) Low-Noise Sin-gle-Frequency 1.5μm Fiber Laser with a Complex Optical-Feedback Loop. IEEE Photonics Technology Letters, 29, 193-196.
https://doi.org/10.1109/LPT.2016.2632747
[7]  闫露露. 掺铒光纤飞秒光梳的研究[D]: [硕士学位论文].西安: 陕西师范大学, 2014.
[8]  陈相材, 高伟清, 陈亮, 徐强, 倪陈全, 陈丽.线形和复合腔结构布里渊光纤激光器实验研究[J]. 合肥工业大学学报: 自然科学版, 2019, 42(5): 716-719.
[9]  郑亚如. 基于高掺杂铒光纤的单频窄线宽激光器研究[D]: [硕士学位论文]. 南京: 南京邮电大学, 2018.
[10]  刘雪丽. 1550 nm窄线宽全光纤脉冲激光器的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019.
[11]  高凡. 光传输系统中掺铒光纤放大器的研究与设计[D]: [硕士学位论文]. 桂林: 广西师范大学, 2019.
[12]  赵春播, 武腾飞, 梁志国. 飞秒激光器脉冲重复频率的锁定技术研究[J]. 新技术新仪器, 2014, 34(6): 22-25.
[13]  商建明. 光纤锁模激光器及其在光纤频率传递中的应用研究[D]: [博士学位论文]. 北京: 北京邮电大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133