全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双酚A的生理毒代动力学(PBTK)模型构建研究
Construction of the Physiological Toxicokinetic Model of Bisphenol A

DOI: 10.12677/HJFNS.2021.103021, PP. 175-189

Keywords: 双酚A,生理毒代动力学模型,健康风险评估,人群
Bisphenol A
, Physiologically Based Toxi-cokinetics, PBTK, Health Risk Assessment, Human

Full-Text   Cite this paper   Add to My Lib

Abstract:

双酚A (BPA)作为一种高产量的化学品,用于许多消费产品,如聚碳酸酯塑料、环氧树脂和热敏纸等。由于BPA的普遍存在性,与BPA接触相关的潜在影响,以及人类血清中异常高的BPA水平,一直是围绕BPA安全性争论的焦点,更好地解决这些争议的一个重要因素是描述BPA在人体中的药代动力学行为的基础过程。基于生理的药代动力学(PBPK)模型,将生理和生化信息整合到一个机制框架中,已广泛用于人类健康风险评估,定量描述化学物质及其代谢产物在人体中的药代动力学。本研究旨在既往研究基础上结合最新的毒理学研究结果,对模型结构进行了优化,主要体现在:a) 补充小肠的动脉血供、实现小肠的血液循环;b) 补充肾脏隔室;c) 去除肠肝循环过程。以产生毒性效应的非结合型BPA为指标,结果显示:优化后模型能更好地模拟人体膳食摄入BPA后血浆中非结合型BPA的浓度变化趋势。模型预测结果与实测值相近,优于既往研究结果,拟合效果良好。通过更新模型结构、优化模型参数和评价模型预测能力与可靠性等,拟建立一个汉族成年人(>18岁)经口摄入BPA的PBTK模型,实现膳食摄入场景下定量预测血液中BPA主要存在形式(未结合态BPA、BPAG和BPAS)的浓度–时间曲线,以及尿液中总BPA的浓度–时间曲线。该模型可为BPA暴露的健康风险评估提供技术支撑。
As a high yield chemical, bisphenol A (BPA) is used in many consumer products, such as polycarbonate plastics, epoxy resins, and thermal paper. Due to the prevalence of BPA, the potential effects associated with BPA exposure, and the abnormally high levels of BPA in human serum, have been the focus of debate surrounding the safety of BPA. An important factor in better resolving these controversies is to describe the underlying processes of the pharmacokinetic behavior of BPA in humans physiology-based pharmacokinetics (PBPK) models, which integrate physiological and biochemical information into a mechanistic framework, have been widely used in human health risk assessment to quantitatively describe the pharmacokinetics of chemicals and their metabolites in the human body. Based on previous studies and combined with the latest results of toxicological studies, this study optimized the structure of the model, which was mainly reflected in the following aspects: a) replenish the arterial blood supply of small intestine to achieve blood circulation of small intestine; b) supplement of renal compartment; c) the removal of enterohepatic circulation was based on unbound BPA, which had toxic effects, and the results showed that the optimized model could better simulate the trend of plasma unbound BPA concentration after dietary BPA intake. The predicted results of the model are close to the measured values, which is better than the previous research results. The fitting effect is good By updating the model structure, optimizing the model parameters and evaluating the prediction ability and reliability of the model, a Han adult (>18 years old) to quantitatively predict the time-concentration curves of the major forms of BPA (unbound BPA, BPAG and BPAS) in blood and total BPA in urine under dietary intake scenarios. This model can provide technical support

References

[1]  Vandenberg, L.N., Hauser, R., Marcus, M., et al. (2007) Human Exposure to Bisphenol A (BPA). Reproductive Toxi-cology, 24, 139-177.
https://doi.org/10.1016/j.reprotox.2007.07.010
[2]  Rubin, B.S. (2011) Bisphenol A: An En-docrine Disruptor with Widespread Exposure and Multiple Effects. Journal of Steroid Biochemistry & Molecular Biology, 127, 27-34.
https://doi.org/10.1016/j.jsbmb.2011.05.002
[3]  Palanza, P.L., Howdeshell, K.L., Parmigiani, S., et al. (2002) Exposure to a Low Dose of Bisphenol A during Fetal Life or in Adulthood Alters Maternal Behavior in Mice. Environmental Health Perspectives, 110, 415-422.
https://doi.org/10.1016/j.jsbmb.2011.05.002
[4]  Cabaton, N.J., Canlet, C., Wadia, P.R., et al. (2013) Effects of Low Doses of Bisphenol A on the Metabolome of Perinatally Exposed CD-1 Mice. Environmental Health Perspectives, 121, 586-593.
https://doi.org/10.1289/ehp.1205588
[5]  Snijder, C.A., Heederik, D., Pierik, H., et al. (2013) Fetal Growth and Prenatal Exposure to Bisphenol A: The Generation R Study. Environmental Health Perspectives, 121, 393-398.
https://doi.org/10.1289/ehp.1205296
[6]  Harley, K.G., Gunier, R.B., Kogut, K., Johnson, C., Bradman, A., Calafat, A.M., Eskenazi, B., et al. (2013) Prenatal and Early Childhood Bisphenol A Concentrations and Behavior in School-Aged Children. Environmental Research, 126, 43-50.
https://doi.org/10.1016/j.envres.2013.06.004
[7]  Rubin, B.S. and Soto, A.M. (2009) Bisphenol A: Perinatal Ex-posure and Body Weight. Molecular and Cellular Endocrinology, 304, 55-62.
https://doi.org/10.1016/j.mce.2009.02.023
[8]  Kenji, M., Tetsuya, T., Takashi, A., et al. (2002) Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. Journal of Clinical Endocrinology and Metabolism, 87, 5185-5190.
https://doi.org/10.1210/jc.2002-020209
[9]  Rey, R., Lukas-Croisier, C., et al. (2003) AMH/MIS: What We Know Already about the Gene, the Protein and Its Regulation. Molecular and Cellular Endocrinology, 211, 21-31.
https://doi.org/10.1016/j.mce.2003.09.007
[10]  Wei, X., Lee, C., Yeung, W., et al. (2011) Effect of Perinatal and Postnatal Bisphenol A Exposure to the Regulatory Circuits at the Hypothalamus-Pituitary-Gonadal Axis of CD-1 Mice. Reproductive Toxicology (Elmsford, N.Y.), 31, 409-417.
https://doi.org/10.1016/j.reprotox.2010.12.002
[11]  Wang, J., Sun, B., Hou, M., et al. (2013) The Environmental Obesogen Bisphenol A Promotes Adipogenesis by Increasing the Amount of 11β-Hydroxysteroid Dehydrogenase Type 1 in the Adipose Tissue of Children. International Journal of Obesity, 37, 999-1005.
https://doi.org/10.1038/ijo.2012.173
[12]  Vafeladi, M., Roumeliotaki, T., Myridakis, A., et al. (2016) Association of Early Life Exposure to Bisphenol A with Obesity and Cardiometabolic Traits in Childhood. Environmental Research, 146, 379-387.
https://doi.org/10.1016/j.envres.2016.01.017
[13]  Sharma, R.P., Schuhmacher, M. and Kumar, V. (2017) Review on Crosstalk and Common Mechanisms of Endocrine Disruptors: Scaffolding to Improve PBPK/PD Model of EDC Mixture. Environment International, 99, 1-14.
https://doi.org/10.1016/j.envint.2016.09.016
[14]  Calafat, A.M., Ye, X., Wong, L.Y., Reidy, J.A. and Needham, L.L. (2008) Exposure of the U.S. Population to Bisphenol A and 4-Tertiary-Octylphenol: 2003-2004. Environmental Health Perspectives, 116, 39-44.
https://doi.org/10.1289/ehp.10753
[15]  Covaci, A., Den Hond, E., Geens, T., Govarts, E., et al. (2015) Urinary BPA Measurements in Children and Mothers from Six European Member States: Overall Results and Determinants of Exposure. Environmental Research, 141, 77-85.
https://doi.org/10.1016/j.envres.2014.08.008
[16]  李慧艳. 双酚A人群暴露情况和健康风险研究进展[J]. 中国公共卫生, 2018, 34(10): 1442-1445.
[17]  高海涛, 李瑞仙, 邸倩南, 等. 我国人群邻苯二甲酸酯类的暴露水平及风险[J]. 癌变?畸变?突变, 2017, 29(6): 471-475.
[18]  Stadnicka, J., Schirmer, K. and Ashauer, R. (2012) Predicting Concentrations of Organic Chemicals in Fish by Using Toxicokinetic Models. Environmental Science & Technology, 46, 3273-3280.
https://doi.org/10.1021/es2043728
[19]  Khalil, F. and L?er, S. (2011) Physiologically Based Pharmacokinetic Modeling: Methodology, Applications, and Limitations with a Focus on Its Role in Pediatric Drug Development. Journal of Biomedicine and Biotechnology, 2011, Article ID: 907461.
https://doi.org/10.1155/2011/907461
[20]  牛志广, 臧雪. 生理药代动力学模型及其在健康风险评价中的应用研究进展[J]. 安全与环境学报, 2015, 15(6): 30-34.
[21]  Sharma, R.P., Schuhmacher, M. and Kumar, V. (2018) The Development of a Pregnancy PBPK Model for Bisphenol A and Its Evaluation with the Available Biomonitoring Data. Science of the Total Environment, 624, 55-68.
https://doi.org/10.1016/j.scitotenv.2017.12.023
[22]  Mielke, H. and Gundert-Remy, U. (2009) Bisphenol A Levels in Blood Depend on Age and Exposure. Toxicology Letters, 190, 32-40.
https://doi.org/10.1016/j.toxlet.2009.06.861
[23]  Teeguarden, J.G., Waechter, J.M., Clewell, H.J., et al. (2005) Evaluation of Oral and Intravenous Route Pharmacokinetics, Plasma Protein Binding, and Uterine Tissue Dose Metrics of Bisphenol A: A Physiologically Based Pharmacokinetic Approach. Toxicological Sciences, 85, 823-838.
https://doi.org/10.1093/toxsci/kfi135
[24]  Yang, X., Doerge, D.R., Teeguarden, J.G., et al. (2015) Development of a Physiologically Based Pharmacokinetic Model for Assessment of Human Exposure to Bisphenol A. Toxicology and Applied Pharmacology, 289, 442-456.
https://doi.org/10.1016/j.taap.2015.10.016
[25]  Taylor, J.A., Vom Saal, F.S., Welshons, W.V., et al. (2011) Simi-larity of Bisphenol A Pharmacokinetics in Rhesus Monkeys and Mice: Relevance for Human Exposure. Environmental Health Perspectives, 119, 422-430.
https://doi.org/10.1016/j.taap.2015.10.016
[26]  Pottenger, L.H., Domoradzki, J.Y., Markham, D.A., et al. (2000) The Relative Bioavailability and Metabolism of Bisphenol A in Rats Is Dependent upon the Route of Administration. Toxicological Sciences: An Official Journal of the Society of Toxicology, 54, 3.
https://doi.org/10.1093/toxsci/54.1.3
[27]  Shi, M.X., et al. (2019) Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicological Sciences, 168, 561-571.
https://doi.org/10.1093/toxsci/kfz014
[28]  Delclos, K.B., Camacho, L., Lewis, S.M., et al. (2016) Toxicity Evalua-tion of Bisphenol A Administered by Gavage to Sprague Dawley Rats from Gestation Day 6 through Postnatal Day 90. Toxicological Sciences: An Official Journal of the Society of Toxicology, 153, 212.
https://doi.org/10.1093/toxsci/kfw123
[29]  Dualde, P., Pardo, O., Corpas-Burgos, F., et al. (2019) Biomonitoring of Bisphenols A, F, S in Human Milk and Probabilistic Risk Assessment for Breastfed Infants. Science of the Total En-vironment, 668, 797.
https://doi.org/10.1016/j.scitotenv.2019.03.024
[30]  Wu, L.H., Zhang, X.M., Wang, F., et al. (2017) Occurrence of Bisphenol S in the Environment and Implications for Human Exposure: A Short Review. Science of the Total Environ-ment, 615, 87-98.
https://doi.org/10.1016/j.scitotenv.2017.09.194
[31]  Chemistry (General). Test No. 315: Bioaccumulation in Sedi-ment-Dwelling Benthic Oligochaetes Oecd Guidelines for the Testing of Chemicals, 2010, Volume 1:1-33(33).
[32]  Karrer, C., Roiss, T., Goetz, N.V., et al. (2018) Physiologically Based Pharmacokinetic (PBPK) Mod-eling of the Bisphenols BPA, BPS, BPF, and BPAF with New Experimental Metabolic Parameters: Comparing the Pharmacokinetic Behavior of BPA with Its Substitutes. Environmental Health Perspectives, 126, Article ID: 077002.
https://doi.org/10.1289/EHP2739
[33]  中华人民共和国国家卫生和计划生育委员会. GBZ/T 200.3-2014. 辐射防护用参考人, 第3部分: 主要生理学参数[S]. 北京: 中国标准出版社, 2014.
[34]  中华人民共和国卫生部. GBZ/T 200.2-2007. 辐射防护用参考人, 第2部分: 主要组织器官质量[S]. 北京: 人民卫生出版社, 2007.
[35]  Doerge, D.R., Twaddle, N.C., Vanlandingham, M., et al. (2011) Distribution of Bisphenol A into Tissues of Adult, Neonatal, and Fetal Sprague-Dawley Rats. Toxicology and Applied Pharmacology, 255, 261-270.
https://doi.org/10.1016/j.taap.2011.07.009
[36]  Thayer, K.A., Doerge, D.R., Hunt, D., et al. (2015) Pharmacoki-netics of Bisphenol A in Humans Following a Single Oral Administration. Environment International, 83, 107-115.
https://doi.org/10.1016/j.envint.2015.06.008
[37]  Pery, A.R.R., Devillers, J., Brochot, C., et al. (2014) A Physio-logically Based Toxicokinetic Model for the Zebra Fish Danio Rerio. Environmental Science & Technology, 48, 781-790.
https://doi.org/10.1021/es404301q
[38]  Wang, X. and Wang, W.X. (2015) Physiologically Based Pharmacokinetic Model for Inorganic and Methylmercury in a Marine Fish. Environmental Science & Technology, 49, 10173-10181.
https://doi.org/10.1021/acs.est.5b02301
[39]  Teeguarden, J.G., Twaddle, N.C., et al. (2015) 24-Hour Human Urine and Serum Profiles of Bisphenol A: Evidence against Sublingual Absorption Following Ingestion in Soup. Toxicology and Applied Pharmacology, 288, 131-142.
https://doi.org/10.1016/j.taap.2015.01.009
[40]  Andersen, M. (2010) Quantitative Modeling in Toxicology. John Wiley & Sons, Ltd., Hoboken.
[41]  Meek, M.E., Ba Rton, H.A., Bessems, J.G., et al. (2013) Case Study Illustrating the WHO IPCS Guidance on Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment. Regulatory Toxicology and Pharmacology, 66, 116-129.
https://doi.org/10.1016/j.taap.2015.01.009
[42]  Bernillon, P. and Bois, F.Y. (2000) Statistical Issues in Toxicoki-netic Modeling: A Bayesian Perspective. Environmental Health Perspectives, 108, 883-893.
https://doi.org/10.1289/ehp.00108s5883
[43]  CDC. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables.
https://www.cdc.gov/exposurereport
[44]  Chen, M., Zhu, P., Xu, B., et al. (2012) Determination of Nine Envi-ronmental Phenols in Urine by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of Analytical Toxicology, 36, 608-615.
https://doi.org/10.1093/jat/bks072
[45]  Ning, G., Bi, Y., Wang, T., et al. (2011) Relationship of Urinary Bisphenol A Concentration to Risk for Prevalent Type 2 Diabetes in Chinese Adults: A Cross-Sectional Analysis. Annals of Inter-nal Medicine, 155, 368-374.
https://doi.org/10.7326/0003-4819-155-6-201109200-00005
[46]  V?lkel, W., Kiranoglu, M. and Fromme, H. (2008) Determination of Free and Total Bisphenol A in Human Urine to Assess Daily Uptake as a Basis for a Valid Risk Assessment. Toxicology Letters, 179, 155-162.
https://doi.org/10.1016/j.toxlet.2008.05.002
[47]  Melzer, D., Harries, L., Cipelli, R., et al. (2011) Bisphenol A Ex-posure Is Associated with in Vivo Estrogenic Gene Expression in Adults. Environmental Health Perspectives, 119, 1788-1793.
https://doi.org/10.1289/ehp.1103809
[48]  Ndaw, S., Remy, A., Jargot, D., et al. (2016) Occupational Exposure of Cashiers to Bisphenol A via Thermal Paper: Urinary Biomonitoring Study. International Archives of Occu-pational & Environmental Health, 89, 935-946.
https://doi.org/10.1007/s00420-016-1132-8
[49]  Bushnik, T., Haines, D., Levallois, P., et al. (2010) Lead and Bi-sphenol A Concentrations in the Canadian Population. Health Reports, 21, 7-18.
[50]  张书莹, 王中钰, 陈景文. 生理毒代动力学模型在化学品生态风险评价中的应用[J]. 科学通报, 2017, 62(35): 4139-4150.
[51]  Fisher, J.W., Twaddle, N.C., Vanlandingham, M., et al. (2011) Pharmacokinetic Modeling: Prediction and Evaluation of Route De-pendent Dosimetry of Bisphenol A in Monkeys with Extrapolation to Humans. Toxicology and Applied Pharmacology, 257, 122-136.
https://doi.org/10.1016/j.taap.2011.08.026
[52]  Tyl, R.W., Myers, C.B., Marr, M.C., et al. (2008) Two-Generation Reproductive Toxicity Study of Dietary Bisphenol A in CD-1 (Swiss) Mice. Toxicological Sciences: An Official Journal of the Society of Toxicology, 104, 362-384.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133