全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钠离子电池铁氧化物负极材料研究进展
Research Progress of Performance of Iron Oxides as Anodes for Sodium-Ion Batteries

DOI: 10.12677/OJNS.2021.94045, PP. 398-404

Keywords: 钠离子电池,铁氧化物,电化学性能
Sodium-Ion Batteries
, Iron Oxides, Electrochemical Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

钠与锂具有相似的物理化学性质,且资源丰富,钠离子电池作为最有前途的锂离子电池替代品之一,越来越受到人们的关注。基于转化反应的铁氧化物FeOx (α/γ-Fe2O3和Fe3O4)具有成本低、比容量大等优点,是一种很有发展前途的钠离子电池负极材料。综述了FeOx材料的合成工艺、电化学性能等方面的最新研究进展。最后,对FeOx材料作为钠离子电池负极存在的问题及其未来发展方向进行了阐述。
Sodium exhibits similar physicochemical properties as lithium and abundant resources on earth. Sodium-ion batteries, one of the most promising alternatives for lithium-ion batteries, have been gaining more and more attention attracted. Iron oxides (FeOx: α/γ--Fe2O3and Fe3O4) based on con-version reaction are promising anodes for sodium-ion batteries because of its low cost and high theoretical capacity. The research progress in FeOx anodes for sodium-ion batteries was reviewed. The synthesis and electrochemical performance of FeOx were summarized. Finally, the problems and future development of FeOx as anodes for sodium-ion batteries were discussed.

References

[1]  Li, Y., Lu, Y., Zhao, C., Hu, Y.S., Titirici, M.M., Li, H., Huang X.J. and Chen, L.Q. (2017) Recent Advances of Elec-trode Materials for Low-Cost Sodium-Ion Batteries towards Practical Application for Grid Energy Storage. Energy Storage Materials, 7, 130-151.
https://doi.org/10.1016/j.ensm.2017.01.002
[2]  Wang, W., Zhu, X., Zhang, Y., Liu, Y., Zhang, Q. and Lei, F. (2018) Structural Designs for Accommodating Volume Expansion in Sodium Ion Batteries. Chinese Journal of Chemistry, 36, 866-874.
https://doi.org/10.1002/cjoc.201800216
[3]  Komaba, S., Mikumo, T., Yabuuchi, N., Ogata, A., Yoshida, H. and Yamada, Y. (2010) Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α-Fe2O3 for Rechargeable Batteries. Journal of the Electrochemical Society, 157, 2806-2810.
https://doi.org/10.1149/1.3254160
[4]  Valvo, M., Lindgren, F., Lafont, U., Bj?refors, F. and Edstr?m, K. (2014) Towards More Sustainable Negative Electrodes in Na-Ion Batteries via Nanostructured Iron Oxide. Journal of Power Sources, 245, 967-978.
https://doi.org/10.1016/j.jpowsour.2013.06.159
[5]  Kumar, P.R., Jung, Y.H., Bharathi, K.K., Lim, C.H. and Kim, D.K. (2014) High Capacity and Low Cost Spinel Fe3O4 for the Na-Ion Battery Negative Electrode Materials. Electrochimica Acta, 146, 503-510.
https://doi.org/10.1016/j.electacta.2014.09.081
[6]  Fiore, M., Longoni, G., Santangelo, S., Panto, F., Stelitano, S., Frontera, P., Antonucci, P. and Ruffo, R. (2018) Electrochemical Characterization of Highly Abundant, Low Cost Iron (III) Oxide as Anode Material for Sodium-Ion Rechargeable Batteries. Electrochimica Acta, 269, 367-377.
https://doi.org/10.1016/j.electacta.2018.02.161
[7]  Nayak, D., Puravankar, S., Ghosh, S. and Adyam, V. (2019) Asymmetric Reaction Pathway of Na+-Ion during Fast Cycling in α-andγ-Fe2O3 Thin Film Anode for Sodium-Ion Battery. Ionics, 25, 5857-5868.
https://doi.org/10.1007/s11581-019-03112-3
[8]  Sun, B., Bao, S., Lexie, J. and Li, C. (2014) Vacuum-Annealing-Tailored Robust and Flexible Nanopore-Structured γ-Fe2O3 Film Anodes for High Capacity and Long Life Na-Ion Batteries. RSC Advances, 4, 36815-36820.
https://doi.org/10.1039/C4RA04686B
[9]  Huang, H., Wang, X., Tervoort, E., Zeng, G., Liu, T., Chen, X., So-logubenko, A. and Niederberger, M. (2018) Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors. ACS Nano, 12, 2753-2763.
https://doi.org/10.1021/acsnano.7b09062
[10]  Jiang, Y., Hu, M., Zhang, D., Yuan, T., Sun, W., Xu, B. and Yan, M. (2014) Transition Metal Oxides for High Performance Sodium Ion Battery Anodes. Nano Energy, 5, 60-66.
https://doi.org/10.1016/j.nanoen.2014.02.002
[11]  Sun, R., Gao, J., Wu, G., Liu, P., Guo, W., Zhou, H., Ge, J., Hu, Y., Xue, Z., Li, H., Cui, P., Zheng, X., Wu, Y., Zhang, G. and Hong, X. (2020) Amorphous Metal Oxide Nanosheets Featuring Reversible Structure Transformations as Sodium-Ion Battery Anodes. Cell Reports Physical Sci-ence, 1, Article ID: 100118.
https://doi.org/10.1016/j.xcrp.2020.100118
[12]  Li, F. and Zhou, Z. (2018) Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors. Small, 14, Article ID: 1702961.
https://doi.org/10.1002/smll.201702961
[13]  Rao, B.N., Kumar, P.R., Padmaraj, O., Venkateswarlu, M. and Satyanarayana, N. (2015) Rapid Microwave Assisted Hydrothermal Synthesis of Porousα-Fe2O3 Nanostructures as Stable and High Capacity Negative Electrode for Lithium and Sodium Ion Batteries. RSC Advances, 5, 34761-34768.
https://doi.org/10.1039/C5RA03238E
[14]  Zhu, J. and Deng, D. (2016) Single-Crystalline α-Fe2O3 Void@ Frame Microframes for Rechargeable Batteries. Journal of Materials Chemistry A, 4, 4425-4432.
https://doi.org/10.1039/C6TA00870D
[15]  Xu, L., Sitinamaluwa, H., Li, H., Qiu, J., Wang, Y., Yan, C., Li, H., Yuan, S. and Zhang, S. (2017) Low Cost and Green Preparation Process for α-Fe2O3@Gum Arabic Electrode for High Performance Sodium ion Batteries. Journal of Materials Chemistry A, 5, 2102-2109.
https://doi.org/10.1039/C6TA08918F
[16]  Wang, S., Wang, W., Zhan, P. and Jiao, S. (2014) Hollow α-Fe2O3 Nanospheres Synthesized Using a Carbon Template as Novel Anode Materials for Na-Ion Batteries. ChemElectroChem, 1, 1636-1639.
https://doi.org/10.1002/celc.201402208
[17]  Wu, Z.G., Zhong, Y.J., Liu, J., Wu, J.H., Guo, X.D., Zhong, B.H. and Zhang, Z.Y. (2015) Subunits Controlled Synthesis of α-Fe2O3 Multi-Shelled Core-Shell Microspheres and Their Effects on Lithium/Sodium Ion Battery Performances. Journal of Materials Chemistry A, 3, 10092-10099.
https://doi.org/10.1039/C5TA01334H

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133