全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微藻生产生物燃料的研究进展
Research Progress of Biofuel Production by Microalgae

DOI: 10.12677/HJCET.2021.114027, PP. 196-206

Keywords: 微藻,生物燃料,可再生能源
Microalgae
, Biofuel, Renewable Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

温室气体排放导致全球变暖,寻找“清洁”能源已成为当前的迫切要求。目前,生物燃料因其具有环境效益而备受重视。微藻具有较高的光合效率、较大的生物量和快速的生长速度,具有很大的优势。通过遗传改造产油微藻提高其生物量,使微藻生物柴油具有更大的竞争力。本文总结了目前有关微藻生产生物燃料的过程,并讨论了微藻生物燃料产业的前景和挑战。
As the greenhouse gas emissions caused the global warming, it has been an urgent requirement to search for “clean” energy sources. At present, biofuels has been attracted much more attention for their benefits. Microalgae have great advantages in term of high photosynthesis efficiency, large biomass and rapid growth rate. Microalgae biodiesel has greater competitiveness by modifying the microalgae production genetically to improve its biomass. This paper summarizes the current process of biofuel production from microalgae, and discusses the prospects and challenges of microalgae biofuel production.

References

[1]  Babu, B. and Wu, J.T. (2008) Production of Natural Butylated Hydroxytoluene as an Antioxidant by Freshwater Phytoplankton. Journal of Phycology, 44, 1447-1454.
https://doi.org/10.1111/j.1529-8817.2008.00596.x
[2]  Mandal, S. and Mallick, N. (2009) Microalga Scenedesmus obliquus as a Potential Source for Biodiesel Production. Applied Microbiology and Biotechnology, 84, 281-291.
https://doi.org/10.1007/s00253-009-1935-6
[3]  Li, X., Hu, H.-Y., Yang, J. and Wu, Y.-H. (2010) Enhancement Effect of Ethyl-2-Methyl Acetoacetate on TAGs Production by a Freshwater Microalga, Scenedesmus sp. LX1. Biore-source Technology, 101, 9819-9821.
https://doi.org/10.1016/j.biortech.2010.07.103
[4]  Ren, H.Y., Liu, B.F., Ma, C., Zhao, L. and Ren, N.-Q. (2013) A New Lipid-Rich Microalga Scenedesmus sp. Strain R-16 Isolated Using Nile Red Staining: Effects of Carbon and Ni-trogen Sources and Initial pH on the Biomass and Lipid Production. Biotechnology for Biofuels, 6, Article No. 143.
https://doi.org/10.1186/1754-6834-6-143
[5]  Jaeger, L., Verbeek, R.E.M., Draaisma, R.B., Martens, D.E., Springer, J., Eggink, G., et al. (2014) Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedes-mus obliquus: (I) Mutant Generation and Characterization. Biotechnology for Biofuels, 7, Article No. 69.
https://doi.org/10.1186/1754-6834-7-69
[6]  Breuer, G., de Jaeger, L., Artus, V.P.G., Martens, D.E, Springer, J., Draaisma, R.B., et al. (2014) Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedesmus obliquus: (II) Evaluation of TAG Yield and Productivity in Controlled Photobioreactors. Biotechnology for Biofuels, 7, Article No. 70.
https://doi.org/10.1186/1754-6834-7-70
[7]  Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnology and Bioengineering, 102, 100-112.
https://doi.org/10.1002/bit.22033
[8]  Li, X., Han, X. and Wu, Q. (2007) Large-Scale Biodiesel Production from Microalga Chlorella protothecoides through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering, 98, 764-771.
https://doi.org/10.1002/bit.21489
[9]  Hellingwerf, K.J. and de Mattos, M.J.T. (2009) Alternative Routes to Biofuels: Light-Driven Biofuel Formation from CO2 and Water Based on the ‘Photanol’ Approach. Journal of Biotechnology, 142, 87-90.
https://doi.org/10.1016/j.jbiotec.2009.02.002
[10]  Deng, M.D. and Coleman, J.R. (1999) Ethanol Synthesis by Genetic Engineering in Cyanobacteria. Applied and Environmental Microbiology, 65, 523-528.
https://doi.org/10.1128/AEM.65.2.523-528.1999
[11]  Polle, J.E.W., Kanakagiri, S., Jin, E.S., Masuda, T. and Melis, A. (2002) Truncated Chlorophyll Antenna Size of the Photosystems—A Practical Method to Improve Microalgal Productivity and Hydrogen Production in Mass Culture. International Journal of Hydrogen Energy, 27, 11-12.
https://doi.org/10.1016/S0360-3199(02)00116-7
[12]  Cazzola, P. (2010) Algae for Biofuels Production Process Description, Life Cycle Assessment and Some Information on Cost. Organisation for Economic Co-Operation and Development (OECD) and International Energy Agency (IEA), Paris.
[13]  Saranya, A., Prabavathi, P. and Sudha, M. (2015) Perspectives and Advances of Microalgae as Feedstock for Biodiesel Production. International Journal of Cur-rent Microbiology and Applied Sciences, 4, 766-775. https://www.ijcmas.com/vol-4-9/A.%20Saranya,%20et%20al.pdf
[14]  Yang, Z., Guo, R., Xu, X., Fan, X. and Li, X. (2011) Thermo-Alkaline Pretreatment of Lipid-Extracted Microalgal Biomass Residues Enhances Hydrogen Production. Journal of Chemical Technology and Biotechnology, 86, 454-460.
https://doi.org/10.1002/jctb.2537
[15]  Anastasios, M. (2002) Green Alga Hydrogen Production: Progress, Challenges and Prospects. International Journal of Hydrogen Energy, 27, 1217-1228.
https://doi.org/10.1016/S0360-3199(02)00110-6
[16]  Chochois, V., Dauvillee, D. and Beyly, A. (2009) Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and Independent Pathways Differ in Their Requirement for Starch Metabolism. Plant Physiology, 151, 631-640.
https://doi.org/10.1104/pp.109.144576
[17]  Panti, L., Chávez, P., Robledo, D. and Pati?o, R. (2007) A Solar Photobioreactor for the Production of Biohydrogen from Microalgae. SPIE Optics + Photonics for Sustainable Energy, San Diego, Article ID: 66500Z.
https://doi.org/10.1117/12.732468
[18]  Hirano, A., Ueda, R., Hirayama, S. and Ogushi, Y. (1997) CO2 Fixation and Ethanol Production with Microalgal Photosynthesis and Intracellular Anaerobic Fermentation. Energy, 22, 137-142.
https://doi.org/10.1016/S0360-5442(96)00123-5
[19]  Ho, S.-H., Huang, S.-W. and Chen, C.-Y. (2013) Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresource Technology, 135, 191-198.
https://doi.org/10.1016/j.biortech.2012.10.015
[20]  Golueke, C.G. and Oswald, W.J. (1959) Biological Conversion of Light Energy to the Chemical Energy of Methane. Journal of Applied Microbiology, 7, 219-227.
https://doi.org/10.1128/am.7.4.219-227.1959
[21]  Salim, S., Bosma, R., Verrmue, M.H. and Wijffels, R.H. (2011) Harvesting of Microalgae by Bioflocculation. Journal of Applied Phycology, 23, 849-855.
https://doi.org/10.1007/s10811-010-9591-x
[22]  Maness, P.C., Yu, J., Eckert, C. and and Ghirardi, M.L. (2009) Photobiological Hydrogen Production: Efforts to Scale up the Capacity of Green Algae and Cyanobacteria to Use Sunlight to Convert Water into Hydrogen Gas for Energy Use. Microbe, 4, 275-280.
https://doi.org/10.1128/microbe.4.275.1
[23]  Netravali, A.N. and Chabba, S. (2003) Composites Get Greener. Materials Today, 6, 22-29.
https://doi.org/10.1016/S1369-7021(03)00427-9
[24]  Rittmann, B.E. (2008) Opportunities for Renewable Bioenergy Using Microorganisms. Biotechnology and Bioengineering, 100, 203-212.
https://doi.org/10.1002/bit.21875
[25]  Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y., et al. (2012) Evaluation of Flocculation Induced by pH Increase for Harvesting Microalgae and Reuse of Flocculated Medium. Bioresource Technology, 110, 496-502.
https://doi.org/10.1016/j.biortech.2012.01.101
[26]  Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
https://doi.org/10.1016/j.biotechadv.2007.02.001
[27]  Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., et al. (2013) Freshwater Microalgae Harvested via Flocculation Induced by pH Decrease. Biotechnology for Biofuels, 6, Article No. 98.
https://doi.org/10.1186/1754-6834-6-98
[28]  Dismukes, C.G., Carrieri, D., Bennette, N., Ananyev, G.M. and Posewitz, M.C. (2008) Aquatic Photorophs: Efficient Alternatives to Land-Based Crops for Biofuels. Current Opinion in Biotechnology, 19, 235-240.
https://doi.org/10.1016/j.copbio.2008.05.007
[29]  Bligh, E.G. and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
https://doi.org/10.1139/o59-099
[30]  Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998) Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; Close-Out Report. National Renewable Energy Lab, Golden, 2.
https://doi.org/10.2172/15003040
[31]  Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
https://doi.org/10.1263/jbb.101.87
[32]  Benemanm, J.R. (2008) Overview: Algae Oil to Biofuel (Annotated Presentation). Workshop: Algal Oil Jet Fuel Production, Arlington, 19 February 2008, 1-63.
[33]  Monteiro, C.M., Cas-tro, P.M.L. and Xavier Malcata, F. (2009) Use of the Microalga Scenedesmus obliquus to Remove Cadmium Cations from Aqueous Solutions. World Journal of Microbiology and Biotechnology, 25, 1573-1578.
https://doi.org/10.1007/s11274-009-0046-y
[34]  Edwards, M. (2010) Algal Species Selection. https://algaeindustrymagazine.com/algae-101-part-seven-algal-species-selection/
[35]  Ruiz-Marin, A., Canedo-Lopez, Y., Campos-Garcia, S., Sabido-Perez, M.Y. and Zavala-Loria, J. (2013) Biodegradation of Wastewater Pollutants by Activated Sludge Coimmobilized with Scenedesmus obliquus. Agrociencia, 47, 429- 441.
[36]  Hodaifa, G., Martnez, M.E. and Sanchez, S. (2009) Daily Doses of Light in Relation to the Growth of Scenedesmus obliquus in Diluted Three-Phase Live Mill Wastewater. Journal of Chemical Technology & Biotechnology, 84, 1550- 1558.
https://doi.org/10.1002/jctb.2219
[37]  Zhang, T.Y., Wu, Y.H. and Hu, H.Y. (2014) Domestic Wastewater Treatment and Biofuel Production by Using Microalga Scenedesmus sp. ZTYI. Water Science and Technology, 69, 2492-2496.
https://doi.org/10.2166/wst.2014.160
[38]  Mata, T.M., Martins, A.A. and Caetano, N.S. (2009) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232.
https://doi.org/10.1016/j.rser.2009.07.020
[39]  Luisa, G. and Cristina, O.A. (2009) Microalgae as a Raw Material for Biofuels Production. Journal of Industrial Microbiology and Biotechnology, 36, 269-274.
[40]  Da Rós, P.C.M., Silva, C.S.P., Silva-Stenico, M.E. and Fiore, M.F. and de Castro, H.F. (2012) Microcystis aeruginosa Lipids as Feedstock for Biodiesel Synthesis by Enzymatic Route. Journal of Molecular Catalysis B: Enzymatic, 84, 177-182.
https://doi.org/10.1016/j.molcatb.2012.04.007
[41]  Sivakumar, G., Vail, D.R., Xu, J., Burner, D.M., Lay Jr., J.O., Ge, X. and Weathers, P.J. (2009) Bioethanol and Biodiesel: Altermative Liqnid Fuels for Future Generations. Engineering in Life Sciences, 10, 8-18.
https://doi.org/10.1002/elsc.200900061

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133