全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于控制图下谐振点随机扰动的伺服系统谐振抑制
Resonance Suppression of Servo System Based on Random Disturbance of Resonance Point in Control Chart

DOI: 10.12677/DSC.2021.103015, PP. 139-151

Keywords: 二质量系统,陷波滤波器,随机扰动,控制限,相角损失
Two Mass System
, Notch Filter, Random Disturbance, Control Limit, Phase Angle Loss

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对谐振点随机扰动下的伺服系统谐振抑制问题,采用优化设计陷波滤波器的方法,并结合控制图对二质量系统进行谐振抑制。首先,建立二质量系统数学模型,并对机械谐振机理进行分析;其次,对于随机扰动的谐振点,利用控制图原理,提出控制限的确定方法;然后,利用优化算法确定陷波滤波器参数,达到既能有效抑制谐振又能使相角损失最小,达到防止过度抑制的目的;最后,仿真与实验结果表明,该方法不仅能有效抑制谐振,保持系统的稳定性,而且避免手动调节参数耗时多的缺陷,可以准确、快速地抑制随机扰动的谐振。
Aiming at the problem of resonance suppression of servo system under random disturbance of resonance point, the optimal design of notch filter and control chart is used to suppress the resonance of two mass system. Firstly, the mathematical model of two mass system is established, and the mechanism of mechanical resonance is analyzed. Secondly, for the resonance point of random disturbance, the method to determine the control limit is proposed by using principle of control chart. Then the parameters of notch filter are determined by using the optimization algorithm, which can effectively suppress resonance and minimize phase angle loss, so as to prevent excessive suppression. Finally, the simulation results are given. The real and experimental results show that the method can not only effectively suppress the resonance and maintain the stability of the system, but also avoid the defect of manual adjustment of parameters, and can accurately and quickly suppress the resonance of random disturbance.

References

[1]  李云松, 陈小安. 精密传动系统伺服驱动机械谐振灵敏度分析[J]. 机械传动, 2017, 41(4): 24.
[2]  Szabat, K. and Orlowska-Kowalska, T. (2007) Vibration Suppression in a Two-Mass Drive System Using PI Speedcontroller and Additional Feedbacks: Comparative Study. IEEE Transactions on Industrial Electronics, 54, 1193-1206.
https://doi.org/10.1109/TIE.2007.892608
[3]  Orlowska-Kowalska, T. and Kaminski, M. (2009) Effectiveness of Saliency-Based Methods in Optimization of Neural State Estimators of the Drive System with Elastic Couplings. IEEE Transactions on Industrial Electronics, 56, 4043-4051.
https://doi.org/10.1109/TIE.2009.2027250
[4]  Katsura, S. and Ohnishi, K. (2007) Force Servoing by Flexible Manipulator Based on Resonance Ratio Control. IEEE Transactions on Industrial Electronics, 54, 539-547.
https://doi.org/10.1109/TIE.2006.888805
[5]  Muszynski, R. and Deskur, J. (2010) Damping of Torsional Vibrations in High-Dynamic Industrial Drives. IEEE Transactions on Industrial Electronics, 57, 544-552.
https://doi.org/10.1109/TIE.2009.2036034
[6]  Hace, A., Jezernik, K. and Abanovic, A. (2007) SMC with Disturbance Observer for a Linear Belt Drive. IEEE Transactions on Industrial Electronics, 54, 3402-3412.
https://doi.org/10.1109/TIE.2007.906130
[7]  Peter, K., Schling, I. and Orlik, B. (2003) Robust Output-Feedback H∞-Control with a Nonlinear Observer for a Two-Mass System. IEEE Transactions on Industry Applications, 39, 637-644.
https://doi.org/10.1109/TIA.2003.811788
[8]  Cychowski, M., Szabat, K. and Orlowska-Kowalska, T. (2009) Constrained Model Predictive Control of the Drive System with Mechanical Elasticity. IEEE Transactions on Industry Applications, 56, 1963-1973.
https://doi.org/10.1109/TIE.2009.2015753
[9]  Zhang, G.G. (2000) Speed Control of Two-Inertia System by PI/PID Control. IEEE Transactions on Industrial Electronics, 47, 603-609.
https://doi.org/10.1109/41.847901
[10]  杨明, 王璨, 徐殿国. 基于轴矩限幅控制的机械谐振抑制技术[J]. 电机与控制学报, 2015, 19(4): 58-64.
[11]  周凤岐, 周军, 郭建国. 现代控制理论基础[M]. 西安: 西北工业大学出版社, 2011.
[12]  刘欣懿, 张宝艳, 石峰晖. 统计过程控制在预浸料生产中的应用[A]. 中国航空学会、中国宇航学会、中国力学学会、中国复合材料学会.第二十一届全国复合材料学术会议(NCCM-21)论文集[C]. 中国航空学会、中国宇航学会、中国力学学会、中国复合材料学会: 中国航空学会, 2020: 6.
[13]  宁凌, 唐楚生. 现代企业管理[M]. 北京: 机械工业出版社, 2011.
[14]  王燕, 金鑫, 毕鹏, 李凯旭, 范桂萍. 商品学概论[M]. 北京: 中国铁道出版社, 2014.
[15]  刘双, 何川, 刘静, 张久军. 测量误差对方差控制图的性能影响分析[J/OL]. 数理统计与管理: 1-10.
[16]  陈景忠, 梁艳玲, 曾远宏. 控制图在水泥强度检验质量控制中的应用[J]. 工程质量, 2020, 38(10): 85-88.
[17]  刘洋洋, 张晓彤. 3σ控制图在混凝土生产质量控制过程中的应用[J]. 中华建设, 2020(8): 148-151.
[18]  Cai, L.-H. and Gao, H.-B. (2011) Research on Method of Eliminating Accurately Mechanical Resonance Frequency of the Theodolite by Complex Notch Filter. 2011 International Conference on System Science, Engineering Design and Manufacturing Informatization, Guiyang, China, 22-23 October 2011.
[19]  Kwan, T. and Martin, K. (1989) Adaptive Detection and Enhancement of Multiple Sinusoids Using a Cascade IIR Filter. IEEE Transactions on Circuits and Systems, 36, 937-947.
https://doi.org/10.1109/31.31329
[20]  王昱忠. 伺服系统机械谐振抑制方法的研究与实现[D]: [硕士学位论文]. 中国科学院大学(中国科学院沈阳计算技术研究所), 2018.
[21]  杨明, 郝亮, 徐殿国. 基于自适应陷波滤波器的在线机械谐振抑制[J]. 哈尔滨工业大学学报, 2014, 46(4): 63-69.
[22]  康健. 伺服系统机械谐振在线检测及抑制方法研究[D]: [硕士学位论文]. 哈尔滨工业大学, 2012.
[23]  Sayyaf, N. and Tavazoei, M.S. (2020) Frequency Data-Based Procedure to Adjust Gain and Phase Margins and Guarantee the Uniqueness of Crossover Frequencies. IEEE Transactions on Industrial Electronics, 67, 2176-2185.
https://doi.org/10.1109/TIE.2019.2905814
[24]  王昱忠, 何平, 王志成, 韩旭. 基于自适应陷波器的伺服系统谐振抑制[J]. 组合机床与自动化加工技术[J], 2019(1): 68-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133