全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于有限元仿真的PIB-ST石英SAW传感器对氯化物的灵敏度研究
Study on Sensitivity of PIB-ST Quartz SAW Sensor to Chloride Based on Finite Element Simulation

DOI: 10.12677/JSTA.2021.93019, PP. 153-172

Keywords: 声表面波,氯化物,传感器,灵敏度
SAW
, Chloride, Sensors, Sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

如今,有机气体可以说是无处不在。许多有机气体对人体和环境均有非常大的害处,因此研究一种新型有机气体传感器显得相当有必要。首先针对声表面波有机气体传感器的研究意义和历史发展进行分析,然后选择COMSOL软件构建了一种声表面波有机气体传感器的二维模型,以进行有限元仿真。模型主要由ST-切型石英基底、PIB敏感薄膜和铝电极构成。在模型构建完成之后,选择了六种有机气体对声表面波有机气体传感器模型进行了仿真。仿真过程中所改变的主要性能参数分别是铝电极的厚度、气体的具体参数、声表面波有机气体传感器的敏感薄膜厚度和有机气体的浓度。对铝电极和敏感膜厚度的仿真可以达到优化传感器机电耦合系数的目的。通过仿真,发现声表面波敏感膜的厚度是重要的性能参数,而有机气体的参数也将影响仿真的结果。同时,实验表明声表面波有机气体传感器的灵敏度和精准度相当高,具有很高的实用价值。
Nowadays, organic gases are everywhere. But a lot of organic gases are harmful to human body and environment, so it is necessary to study a new type of organic gas sensor. The research significance and historical development of saw organic gas sensor are analyzed, and then a two-dimensional model of saw organic gas sensor is constructed with COMSOL software for finite element simulation. The model is mainly composed of ST quartz substrate, PIB sensitive film and aluminum electrode. After the model construction, six kinds of organic gases are selected to test the model of saw organic gas sensor. The main performance parameters changed during the test are the thickness of aluminum electrode, the specific parameters of gas, the thickness of sensitive film of saw organic gas sensor and the concentration of organic gas. The measurement of the thickness of aluminum electrode and sensitive film can optimize the electromechanical coupling coefficient of the sensor. Through the test, it is found that the thickness of saw sensitive film is an important performance parameter, and the parameters of organic gas will also affect the test results. At the same time, the experiment shows that the sensitivity and accuracy of saw organic gas sensor are quite high, which have high practical value.

References

[1]  Rayleigh, L. (1885) On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society, s1-17, 4-11.
https://doi.org/10.1112/plms/s1-17.1.4
[2]  马仁豪. 基于石墨烯敏感膜的声表面波氢气传感器的研究[D]: [硕士学位论文]. 南京: 南京大学, 2019.
[3]  Wohltjen, H. and Dessy, R. (1979) Surface Acoustic Wave Probes for Chemical Analysis III. Thermomechanical Polymer Analyzer. Analytical Chemistry, 51, 1470-1475.
https://doi.org/10.1021/ac50045a026
[4]  Dai, E.G. and Feng, G.P. (1997) Passive and Remote Sensing Based upon Surface Acoustic Wave in Special Environments. International Microwave & Optoelectronics Con-ference IEEE, Natal, 11-14 August 1997, 133-139.
[5]  Barie, N., Skrypnik, A., Voigt, A., et al. (2007) Work Place Monitoring Using a High Sensitive Surface Acoustic Wave Based Sensor System. TRANSDUCERS 2007—2007 Inter-national Solid-State Sensors, Actuators and Microsystems Conference, Lyon, 10-14 June 2007, 1003-1006.
https://doi.org/10.1109/SENSOR.2007.4300302
[6]  Yamanaka, et al. (2010) Multiple Organic Gas Detection by the Ball Surface Acoustic Wave Sensor. First International Conference on Sensor Device Technologies & Applications IEEE, Venice, 18-25 July 2010, 120-123.
https://doi.org/10.1109/SENSORDEVICES.2010.29
[7]  Liu, M., Liu, J. and He, S. (2014) Optimization Fre-quency Baseline Noise of Saw Sensor in SAW/GC System. Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Beijing, 30 October-2 November 2014, 56-58.
https://doi.org/10.1109/SPAWDA.2014.6998525
[8]  Hu, H., Wang, W., He, S., et al. (2015) Development of Cryptophane A-Coated SAW Methane Gas Sensor. 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Jinan, 30 October-2 November 2015, 143-146.
https://doi.org/10.1109/SPAWDA.2015.7364459
[9]  Gao, F., Boussaid, F., Xuan, W., et al. (2018) Dual Trans-duction Surface Acoustic Wave Gas Sensor for VOC Discrimination. IEEE Electron Device Letters, 39, 1920-1923.
https://doi.org/10.1109/LED.2018.2874821
[10]  吴展翔. 多层结构声表面波温度传感器的研究与设计[D]: [硕士学位论文]. 武汉: 华中科技大学, 2014.
[11]  Kabir, K.M.M., Matthews, G.I., Sabri, Y.M., et al. (2016) Develop-ment and Experimental Verification of a Finite Element Method for Accurate Analysis of a Surface Acoustic Wave De-vice. Smart Materials & Structures, 25, 35-40.
https://doi.org/10.1088/0964-1726/25/3/035040
[12]  王靖. 声表面波气体传感器系统集成设计与仿真[D]: [硕士学位论文]. 西安: 西安科技大学, 2017.
[13]  高君华. 基于声表面波气体检测器件特性的研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2015.
[14]  龙吟. 声表面波痕量气体传感器敏感机理与特性研究[D]: [博士学位论文]. 成都: 电子科技大学, 2019.
[15]  Wang, S.-Y., Ma, J.-Y., Li, Z.-J., et al. (2015) Surface Acoustic Wave Ammo-nia Sensor Based on ZnO/SiO2 Composite Film. Journal of Hazardous Materials, 285, 368-374.
https://doi.org/10.1016/j.jhazmat.2014.12.014
[16]  Tang, Y.L., Li, Z.J., Ma, J.Y., et al. (2014) Ammonia Gas Sensors Based on ZnO/SiO2 Bi-Layer Nanofilms on ST-Cut Quartz Surface Acoustic Wave Devices. Sensors & Actua-tors B Chemical, 201, 114-121.
https://doi.org/10.1016/j.snb.2014.04.046
[17]  王城. 氧化锌压电薄膜的制备及其相关性能研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2019.
[18]  周洪林. 声表面波甲醛气体传感器研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133