|
刮削法冰浆制备系统的热力学分析与优化
|
Abstract:
[1] | Alok, K., Sateesh, K.Y., Ankit, M., et al. (2019) On-Demand Intermittent Ice Slurry Generation for Subzero Cold Ther-mal Energy Storage: Numerical Simulation and Performance Analysis. Applied Thermal Engineering, 161, Article ID: 114081. https://doi.org/10.1016/j.applthermaleng.2019.114081 |
[2] | Kauffeld, M. and Gund, S. (2019) Ice Slur-ry—History, Current Technologies and Future Developments. International Journal of Refrigeration, 99, 264-271. https://doi.org/10.1016/j.ijrefrig.2019.01.010 |
[3] | Guo, W.M., Zhang, Y.L. and Meng, Z.N. (2020) Non-Uniform Melting of a Spherical Ice Particle in Free Ascending. International Journal of Heat and Mass Transfer, 148, Article ID: 119097.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119097 |
[4] | Gao, Y.G., Xi, Y.Y., Yang, Z.Z., Sasmito, A.P., Mujumdar, A.S. and Wang, L.J. (2021) Experimental Investigation of Specific HEAT of Aqueous Graphene Oxide Al2O3 Hybrid Nanofluid. Thermal Science, 25, 515-525.
https://doi.org/10.2298/TSCI190404381G |
[5] | Brooks, S., Quarini, G., Tierney, M., Yun, X. and Lucas, E. (2020) Conditions for Continuous Ice Slurry Generation in a Nylon Helical Coiled Heat Exchanger. Thermal Science and Engi-neering Progress, 15, Article ID: 100427.
https://doi.org/10.1016/j.tsep.2019.100427 |
[6] | 王泽普. 刮削式流化冰制冰设备的优化设计[D]: [硕士学位论文]. 天津: 天津大学, 2017. |
[7] | 黄成, 吴昊凡, 黄河源, 等. 螺旋刮削式流态冰制取性能的实验研究[J]. 化工进展, 2017, 36(1): 59-65. |
[8] | 王磊. 基于Simulink的刮片式流化冰制冰系统的动态仿真及性能优化[D]: [硕士学位论文]. 天津: 天津大学, 2017. |
[9] | 饶志明. 刮片式冰浆制取系统的分析与实验研究[D]: [硕士学位论文]. 天津: 天津商业大学, 2013. |
[10] | Tatsunori, A. and Yusuke, E. (2020) Experimental Study on Absorption Ice Slurry Genera-tor with Ethanol Solution as the Refrigerant. International Journal of Heat and Mass Transfer, 162, Article ID: 120333.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120333 |
[11] | Zhang, X.H., Dou, K., Zhang, G.W., Li, X.G., Cheng, W.S. and Zhu, H. (2021) Preparation of CO2/N2 Cryogenic Slurry and Its Pipeline Flow Characteristics. E3S Web of Conferences, 233, Article ID: 01068.
https://doi.org/10.1051/e3sconf/202123301068 |
[12] | Hazarika, M.M., Ramgopal, M., Bhattacharyya, S. and Do-ménech, R.L. (2021) Role of Receiver on the Performance of a Transcritical CO2 Based Air-Conditioning Unit with Sin-gle-Stage and Two-Stage Expansion. Science and Technology for the Built Environment, 27, 1-28. https://doi.org/10.1080/23744731.2021.1902189 |
[13] | Faizan, A. (2021) Experimental Investigation of Al2O3-Water Nanofluid as a Secondary Fluid in a Refrigeration System. Case Studies in Thermal Engineering, 26, Article ID: 101024. https://doi.org/10.1016/j.csite.2021.101024 |
[14] | Gao, Y.G., Wang, H.C., Sasmito, A.P. and Mujumdar, A.S. (2018) Measurement and Modeling of Thermal Conductivity of Graphene Nanoplatelet Water and Ethylene Glycol Base Nanofluids. International Journal of Heat and Mass Transfer, 123, 97-109. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.089 |
[15] | Hu, J., Liu, C., Li, Q., et al. (2019) Thermal Energy Storage of R1234yf/MOF-5 and R1234ze(Z)/MOF-5 Nanofluids: A Molecular Simulation Study. Energy Procedia, 158, 4604-4610. https://doi.org/10.1016/j.egypro.2019.01.870 |
[16] | Kosei, T., Shou, S., Takahiko, M., Nobuo, T., Yukihiro, H. and Kyaw, T. (2021) Heat Pump Cycle Using Refrigerant Mixtures of HFC32 and HFO1234yf. Heat Transfer Engineering, 42, 1-14.
https://doi.org/10.1080/01457632.2020.1776997 |
[17] | Longo, G.A., Mancin, S., Righetti, G., et al. (2019) R1234yf and R1234ze(E) as Environmentally Friendly Replacements of R134a: Assessing Flow Boiling on an Experimental Basis. International Journal of Refrigeration, 108, 336-346.
https://doi.org/10.1016/j.ijrefrig.2019.09.008 |
[18] | Lee, D.C., Yun, S.H., Choi, J.Y. and Kim, Y.C. (2021) Flow Patterns and Heat Transfer Characteristics of R-1234ze(E) for Downward Condensation in a Plate Heat Exchanger. In-ternational Journal of Heat and Mass Transfer, 175, Article ID: 121373. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121373 |
[19] | Colombo, L.P.M., Lucchini, A. and Molinaroli, L. (2020) Experimental Analysis of the Use of R1234yf and R1234ze(E) as Drop-In Alternatives of R134a in a Wa-ter-to-Water Heat Pump. International Journal of Refrigeration, 115, 18-27. https://doi.org/10.1016/j.ijrefrig.2020.03.004 |
[20] | Zhang, S.Z., Li, Y., Xu, Y.Y., Yang, J.H. and Wang, Q. (2021) A New Method for Estimating the Refrigerant Distribution in Plate Evaporator Based on Infrared Thermal Imaging. In-ternational Journal of Refrigeration, 126, 57-65.
https://doi.org/10.1016/j.ijrefrig.2021.01.030 |