|
γδ T细胞的生物学特征及在抗肿瘤免疫治疗中的研究进展
|
Abstract:
本综述的目的是为了充分认识和理解γδ T细胞在肿瘤微环境中的作用机制以及在肿瘤免疫治疗中的临床研究意义。γδ T细胞是构成MHC非限制性的先天性T细胞群体,在先天免疫和适应性免疫之间架起桥梁,在抗肿瘤免疫反应中发挥作用。γδ T细胞可以分泌大量的细胞因子,对多种癌细胞发挥细胞毒性。γδ T细胞在肿瘤的免疫监视作用中表现突出,已经成为癌症免疫治疗非常有吸引力的效应细胞。γδ T细胞主要通过分泌促凋亡分子和炎性细胞因子或通过TCR依赖性途径介导抗肿瘤治疗。近些年,γδ T细胞的临床研究数据表明,γδ T细胞免疫治疗具有良好的耐受性和有效性。但是,γδ T细胞在免疫治疗研究中仍存在着一些不足,甚至还发现其有促肿瘤的免疫抑制作用。γδ T细胞的未来研究应集中在体外扩增方法的稳定性改善方面,同时,需要更多的研究来探索γδ T细胞在促进或阻止肿瘤生长之间的平衡,以及在肿瘤微环境中所发挥的作用。
The purpose of this review is to fully understand the role of γδ T cells in the microenvironment of tumor and its clinical significance in tumor immunotherapy. γδ T cells are MHC non-restrictive congenital T cell population and important effector cells, which play a role in anti-tumor immune response by building bridges between innate and adaptive immunity. γδ T cells can secrete a large number of cytokines and exert cytotoxicity to a variety of cancer cells. γδ T cells are prominent in the immune surveillance of tumors and have become very attractive effector cells for cancer immunotherapy. γδ T cells mediate antitumor therapy mainly by secreting pro-apoptotic molecules and inflammatory cytokines or through TCR dependent pathways. Some clinical data of γδ T cell therapy clinical trials in recent years show that γδ T cell immunotherapy has good tolerance and effectiveness. Although these advantages bring good news to patients, there are still some shortcomings in immunotherapy of γδ T cells, and there are reports of tumor-promoting studies. The future direction of γδ T cell immunotherapy should focus on the stability of γδ T in vitro amplification methods to help stimulate γδ T cells to expand in vitro. At the same time, more researches are needed to explore the role of tumor microenvironment and the balance between γδ T cell pro- and anti-tumor functions.
[1] | Wu, P., Wu, D., Ni, C., et al. (2014) γδT17 Cells Promote the Accumulation and Expansion of Myeloid-Derived Suppressor Cells in Human Colorectal Cancer. Immunity, 40, 785-800. https://doi.org/10.1016/j.immuni.2014.03.013 |
[2] | Coffelt, S.B., Kersten, K., Doornebal, C.W., et al. (2015) IL-17 Producing γδ T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature, 522, 345-348. https://doi.org/10.1038/nature14282 |
[3] | Shah, N.N. and Fry, T.J. (2019) Mechanisms of Resistance to CAR T Cell Therapy. Nature Reviews Clinical Oncology, 16, 372-385. https://doi.org/10.1038/s41571-019-0184-6 |
[4] | Kabelitz, D., Hinz, T., Dobmeyer, T., Mentzel, U., Marx, S., B?hme, A., Arden, B., Rossol, R. and Hoelzer, D. (1997) Clonal Expansion of Vgamma3/Vdelta3-Expressing Gammadelta T Cells in an HIV-1/2-Negative Patient with CD4 T-Cell Deficiency. British Journal of Haematology, 96, 266-271. https://doi.org/10.1046/j.1365-2141.1997.d01-2027.x |
[5] | Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. and Tanabe, K. (2011) Phase I/II Study of Adoptive Transfer of γδ T Cells in Combination with Zoledronic Acid and IL-2 to Patients with Advanced Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 60, 1075-1084. https://doi.org/10.1007/s00262-011-1021-7 |
[6] | Johnson, J.R., Williams, G. and Pazdur, R. (2003) End Points and United States Food and Drug Administration Approval of Oncology Drugs. Journal of Clinical Oncology, 21, 1404-1411. https://doi.org/10.1200/JCO.2003.08.072 |
[7] | Body, J.J. (2006) Bisphosphonates for Malignancy-Related Bone Disease: Current Status, Future Developments. Supportive Care in Cancer, 14, 408-418. https://doi.org/10.1007/s00520-005-0913-5 |
[8] | Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J. and Thun, M.J. (2005) Cancer Statistics, 2005. CA: A Cancer Journal for Clinicians, 55, 10-30. https://doi.org/10.3322/canjclin.55.1.10 |
[9] | Liu, Z., Guo, B.L., Gehrs, B.C., Nan, L. and Lopez, R.D. (2005) Ex Vivo Expanded Human Vγ9Vδ2 γδ +T Cells Mediate Innate Antitumor Activity against Human Prostate Cancer Cells in Vitro. The Journal of Urology, 173, 1552-1556.
https://doi.org/10.1097/01.ju.0000154355.45816.0b |
[10] | Viey, E., Fromont, G., Escudier, B., Morel, Y., Da Rocha, S., Chouaib, S., et al. (2005) Phosphostim Activated γδ T Cells Kill Autologous Metastatic Renal Cell Carcinoma. Journal of Immunology, 174, 1338-1347.
https://doi.org/10.4049/jimmunol.174.3.1338 |
[11] | Kabelitz, D., Wesch, D., Pitters, E. and Zoller, M. (2004) Characterization of Tumor Reactivity of Human Vγ9Vδ2 γδT Cells in Vitro and in SCID Mice in Vivo. Journal of Immunology, 173, 6767-6776.
https://doi.org/10.4049/jimmunol.173.11.6767 |
[12] | D’Asaro, M., La Mendola, C., Di Liberto, D., Orlando, V., Todaro, M., Spina, M., et al. (2010) Vγ9Vδ2 T Lymphocytes Efficiently Recognize and Kill Zoledronate-Sensitized, Imatinib-Sensitive, and Imatinib-Resistant Chronic Myelogenous Leukemia Cells. Journal of Immunology, 184, 3260-3268. https://doi.org/10.4049/jimmunol.0903454 |
[13] | Lang, J.M., Kaikobad, M.R., Wallace, M., Staab, M.J., Horvath, D.L., Wilding, G., Liu, G., Eickhoff, J.C., McNeel, D.G. and Malkovsky (2011) Pilot Trial of Interleukin-2 and Zoledronic Acid to Augment γδ T Cells as Treatment for Patients with Refractory Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 60, 1447-1460.
https://doi.org/10.1007/s00262-011-1049-8 |
[14] | Van Acker, H.H., Anguille, S., Van Tendeloo, V.F. and Lion, E. (2015) Empowering Gamma Delta T Cells with Antitumor Immunity by Dendritic Cell-Based Immunotherapy. Oncolimmunology, 4, e1021538.
https://doi.org/10.1080/2162402X.2015.1021538 |
[15] | Das, H., Groh, V., Kuijl, C., Sugita, M., Morita, C.T., Spies, T., et al. (2001) MICA Engagement by Human Vγ9Vδ2 T Cells Enhances Their Antigen Dependent Effector Function. Immunity, 15, 83-93.
https://doi.org/10.1016/S1074-7613(01)00168-6 |
[16] | Rincon-Orozco, B., Kunzmann, V., Wrobel, P., Kabelitz, D., Steinle, A. and Herrmann, T. (2005) Activation of Vγ9Vδ2 T Cells by NKG2D. Journal of Immunology, 175, 2144-2151. https://doi.org/10.4049/jimmunol.175.4.2144 |
[17] | Dieli, F., Troye-Blomberg, M., Ivanyi, J., Fournie, M., Bonneville, M.A., Peyrat, G., et al. (2001) Granulysin Dependent Killing of Intracellular and Extracellular Mycobacterium tuberculosis by Vγ9Vδ2 T Lymphocytes. The Journal of Infectious Diseases, 184, 1082-1085. https://doi.org/10.1086/323600 |
[18] | Vermijlen, D., Ellis, P., Langford, C., Klein, A., Engel, R., Willimann, K., et al. (2007) Distinct Cytokine Driven Responses of Activated Blood γδ T Cells: Insights into Unconventional T Cell Pleiotropy. Journal of Immunology, 178, 4304-4314. https://doi.org/10.4049/jimmunol.178.7.4304 |
[19] | Dalton, J.E., Howell, G., Pearson, J., Scott, P. and Carding, S.R. (2004) Fas-Fas Ligand Interactions Are Essential for the Binding to and Killing of Activated Macrophages by γδ. Journal of Immunology, 173, 3660-3667.
https://doi.org/10.4049/jimmunol.173.6.3660 |
[20] | Ismaili, J., Olislagers, V., Poupot, R., Fournie, J.J. and Goldman, M. (2002) Human γδ T Cells Induce Dendritic Cell Maturation. Clinical Immunology, 103, 296-302. https://doi.org/10.1006/clim.2002.5218 |
[21] | Tosolini, M., Pont, F., Poupot, M., et al. (2017) Assessment of Tumor-Infiltrating TCR Vγ9Vδ2 γδ Lymphocyte Abundance by Deconvolution of Human Cancers Microarrays. Oncoimmunology, 6, e1284723.
https://doi.org/10.1080/2162402X.2017.1284723 |
[22] | Tanaka, Y., Morita, C.T., Nieves, E., Brenner, M.B. and Bloom, B.R. (1995) Natural and Synthetic Non-Peptide Antigens Recognized by Human γδ T Cells. Letter to Nature, 375, 155-158. https://doi.org/10.1038/375155a0 |
[23] | Davey, M.S., Willcox, C.R., Hunter, S., et al. (2018) The Human Vdelta2(+) T-Cell Compartment Comprises Distinct Innate-Like Vgamma9(+) and Adaptive Vgamma9(-) Subsets. Nature Communications, 9, 1760.
https://doi.org/10.1038/s41467-018-04076-0 |
[24] | Christopoulos, P., Bukatz, D., Kock, S., et al. (2016) Improved Analysis of TCRgd Variable Region Expression in Humans. The Journal of Immunological Methods, 434, 66-72. https://doi.org/10.1016/j.jim.2016.04.009 |
[25] | Fisher, J.P., Yan, M., Heuijerjans, J., et al. (2014) Neuroblastoma Killing Properties of Vd2 and Vd2-Negative CDT Cells Following Expansion by Arti?cial Antigen-Presenting Cells. Clinical Cancer Research, 20, 5720-5732.
https://doi.org/10.1158/1078-0432.CCR-13-3464 |
[26] | Silva-Santos, B., Serre, K. and Norell, H. (2015) γδ T Cells in Cancer. Nature Reviews Immunology, 15, 683-691.
https://doi.org/10.1038/nri3904 |
[27] | McCarthy, N.E., Bashir, Z., Vossenkamper, A., et al. (2013) Proinflammatory Vdelta2+T Cells Populate the Human Intestinal Mucosa and Enhance IFN Gamma Production by Colonic Alphabeta T Cells. Journal of Immunology, 191, 2752-2763. https://doi.org/10.4049/jimmunol.1202959 |
[28] | Wu, Y.L., Ding, Y.P., Tanaka, Y., Shen, L.W., Wei, C.H., Minato, N. and Zhang, W. (2014) Gammadelta T Cells and Their Potential for Immunotherapy. International Journal of Biological Sciences, 10, 119-135.
https://doi.org/10.7150/ijbs.7823 |
[29] | Coffelt, S.B., Kersten, K., Doornebal, C.W., et al. (2015) IL-17-Producing Gammadelta T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature, 522, 345-348. https://doi.org/10.1038/nature14282 |
[30] | Castro, F., Cardoso, A.P., Goncalves, R.M., et al. (2018) Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Immunology, 9, 847. https://doi.org/10.3389/fimmu.2018.00847 |
[31] | Medina, B.D., Liu, M., Vitiello, G.A., et al. (2019) Oncogenic Kinase Inhibition Limits Batf3-Dependent Dendritic Cell Development and Antitumor Immunity. Journal of Experimental Medicine, 216, 1359-1376.
https://doi.org/10.1084/jem.20180660 |
[32] | Tyler, C.J., Doherty, D.G., Moser, B. and Eberl, M. (2015) Human Vγ9/Vδ2 T Cells: Innate Adaptors of the Immune System. Cellular Immunology, 296, 10-21. https://doi.org/10.1016/j.cellimm.2015.01.008 |
[33] | Cabillic, F., Toutirais, O., Lavoué, V., de La Pintière, C.T., Daniel, P., Rioux-Leclerc, N., Turlin, B., M?nkk?nen, H., M?nkk?nen, J., Boudjema, K., Catros, V. and Bouet-Toussaint, F. (2010) Aminobisphosphonate-Pretreated Dendritic Cells Trigger Successful Vγ9Vδ2 T Cell Amplification for Immunotherapy in Advanced Cancer Patients. Cancer Immunology, Immunotherapy, 59, 1611-1619. https://doi.org/10.1007/s00262-010-0887-0 |
[34] | Bennouna, J., Bompas, E., Neidhardt, E.M., Rolland, F., Philip, I., Galéa, C., Salot, S., Saiagh, S., Audrain, M., Rimbert, M., Lafaye-de Micheaux, S., Tiollier, J. and Négrier, S. (2008) Phase-I Study of Innacell γδ?, an Autologous Cell-Therapy Product Highly Enriched in γ9δ2 T Lymphocytes, in Combination with IL-2, in Patients with Metastatic Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 57, 1599-1609.
https://doi.org/10.1007/s00262-008-0491-8 |
[35] | Liu, Z.Y., Guo, B. and Lopez, R.D. (2009) Expression of Intercellular Adhesion Molecule (ICAM)-1 or ICAM-2 Is Critical in Determining Sensitivity of Pancreatic Cancer Cells to Cytolysis by Human Gamma Delta-T Cells: Implications in the Design of Gamma Delta-T-Cell-Based Immunotherapies for Pancreatic Cancer. Journal of Gastroenterology and Hepatology, 24, 900-911. https://doi.org/10.1111/j.1440-1746.2008.05668.x |
[36] | Devaud, C., Bilhere, E., Loizon, S., et al. (2009) Antitumor Activity of Gammadelta T Cells Reactive against Cytomegalovirus-Infected Cells in a Mouse Xenograft Tumor Model. Cancer Research, 69, 3971-3978.
https://doi.org/10.1158/0008-5472.CAN-08-3037 |
[37] | Benzaid, I., Monkkonen, H. and Clezardin, P. (2011) Effects of Zoledronic Acid and Denosumab on Human V Gamma 9V Delta 2 T-Cell-Mediated Cell Death of RANK-Expressing Breast Cancer Cells. European Journal of Cancer, 47, S117. https://doi.org/10.1016/S0959-8049(11)70717-1 |
[38] | Nakajima, J., Murakawa, T., Fukami, T., et al. (2010) A Phase I Study of Adoptive Immunotherapy for Recurrent Non-Small-Cell Lung Cancer Patients with Autologous Gammadelta T Cells. European Journal of Cardio-Thoracic Surgery, 37, 1191-1197. https://doi.org/10.1016/j.ejcts.2009.11.051 |
[39] | Bialasiewicz, A.A., Ma, J.X. and Richard, G. (1999) αβ- and γδ TCR+ Lymphocyte Infiltration in Necrotising Choroidal Melanomas. British Journal of Ophthalmology, 83, 1069-1073. https://doi.org/10.1136/bjo.83.9.1069 |
[40] | Kuyama, H., Hagi, T., Mattarollo, S., et al. (2008) Vgamma9Vdelta2 T Cell Cytotoxicity against Tumor Cells Is Enhanced by Monoclonal Antibody Drugs Rituximab and Trastuzumab. International Journal of Cancer, 122, 2526-2534.
https://doi.org/10.1002/ijc.23365 |
[41] | Fabre, J., Giustiniani, J., Garbar, C., et al. (2016) Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. International Journal of Molecular Sciences, 17, 1433.
https://doi.org/10.3390/ijms17091433 |
[42] | Rei, M., Goncalves-Sousa, N., Lanca, T., et al. (2014) Murine CD27-Vc6+ γδ T Cells Producing IL-17A Promote Ovarian Cancer Growth via Mobilization of Protumor Small Peritoneal Macrophages. Proceedings of the National Academy of Sciences of the United States of America, 111, E3562-E3570. https://doi.org/10.1073/pnas.1403424111 |
[43] | Daley, D., Zambirinis, C.P., Seifert, L., et al. (2016) γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation. Cell, 166, 1485-1499e1415. https://doi.org/10.1016/j.cell.2016.07.046 |
[44] | Jin, C., Lagoudas, G.K., Zhao, C., et al. (2019) Commensalmicrobiota Promote Lung Cancer Development via γδ T Cells. Cell, 176, 998-1013e1016. https://doi.org/10.1016/j.cell.2018.12.040 |
[45] | Ma, C.L., Zhang, Q.Y., Ye, J., et al. (2012) Tumor-Infiltrating Gamma Delta T Lymphocytes Predict Clinical Outcome in Human Breast Cancer. Journal of Immunology, 12, 1451-1456. |
[46] | Lafont, V., Sanchez, F., Laprevotte, E., et al. (2014) Plasticity of Gammadelta T Cells: Impact on the Antitumor Response. Frontiers in Immunology, 5, 622. https://doi.org/10.3389/fimmu.2014.00622 |
[47] | Buccheri, S., Guggino, G., Caccamo, N., Li Donni, P. and Dieli, F. (2014) Efficacy and Safety of γδ T Cell-Based Tumor Immunotherapy: A Meta-Analysis. Journal of Biological Regulators and Homeostatic Agents, 28, 81-90. |
[48] | Wakita, D., Sumida, K., Iwakura, Y., Nishikawa, H., Ohkuri, T., Chamoto, K., et al. (2010) Tumor-Infiltrating IL-17-Producing γδ T Cells Support the Progression of Tumor by Promoting Angiogenesis. European Journal of Immunology, 40, 1927-1937. https://doi.org/10.1002/eji.200940157 |